【題目】已知點,點是圓上的任意一點,設(shè)為該圓的圓心,并且線段的垂直平分線與直線交于點.
(1)求點的軌跡方程;
(2)已知兩點的坐標(biāo)分別為, ,點是直線上的一個動點,且直線分別交(1)中點的軌跡于兩點(四點互不相同),證明:直線恒過一定點,并求出該定點坐標(biāo).
【答案】(1)(2)直線恒過一定點.
【解析】試題分析:(1)利用垂直平分線的性質(zhì)可得,再結(jié)合橢圓的定義,可得點的軌跡方程;(2)設(shè)直線的方程為與橢圓方程聯(lián)立,消去,利用根與系數(shù)的關(guān)系可得,利用兩直線方程,及, 的交點的橫坐標(biāo)為,可得,結(jié)合前面兩式,化簡可得.則當(dāng)時,恒成立,直線過定點.試題解析:(Ⅰ)依題意有, ,
且,
所以點的軌跡方程為: .
(Ⅱ)依題意設(shè)直線的方程為: ,
代入橢圓方程得:
且: ①,②
∵直線: ,直線:
由題知, 的交點的橫坐標(biāo)為4,得:
,即
即: ,整理得:
③
將①②代入③得:
化簡可得:
當(dāng)變化時,上式恒成立,故可得:
所以直線恒過一定點.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax﹣ (a,b∈N*),f(1)= 且f(2)<2.
(1)求a,b的值;
(2)判斷并證明函數(shù)y=f(x)在區(qū)間(﹣1,+∞)上的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),( 且)為定義域上的增函數(shù), 是函數(shù)的導(dǎo)數(shù),且的最小值小于等于0.
(1)求的值;
(2)設(shè)函數(shù),且,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2x﹣ ,且f(2)= .
(1)求實數(shù)a的值;
(2)判斷該函數(shù)的奇偶性;
(3)判斷函數(shù)f(x)在(1,+∞)上的單調(diào)性,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】棉花的纖維長度是評價棉花質(zhì)量的重要指標(biāo),某農(nóng)科所的專家在土壤環(huán)境不同的甲、乙兩塊實驗地分別種植某品種的棉花,為了評價該品種的棉花質(zhì)量,在棉花成熟后,分別從甲、乙兩地的棉花中各隨機抽取20根棉花纖維進行統(tǒng)計,結(jié)果如下表:(記纖維長度不低于300的為“長纖維”,其余為“短纖維”)
纖維長度 | |||||
甲地(根數(shù)) | 3 | 4 | 4 | 5 | 4 |
乙地(根數(shù)) | 1 | 1 | 2 | 10 | 6 |
(1)由以上統(tǒng)計數(shù)據(jù),填寫下面列聯(lián)表,并判斷能否在犯錯誤概率不超過0.025的前提下認(rèn)為“纖維長度與土壤環(huán)境有關(guān)系”.
甲地 | 乙地 | 總計 | |
長纖維 | |||
短纖維 | |||
總計 |
附:(1);
(2)臨界值表;
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(2)現(xiàn)從上述40根纖維中,按纖維長度是否為“長纖維”還是“短纖維”采用分層抽樣的方法抽取8根進行檢測,在這8根纖維中,記乙地“短纖維”的根數(shù)為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓C1: 和圓C2:x2+y2=b2 , 已知圓C2將橢圓C1的長軸三等分,且圓C2的面積為π.橢圓C1的下頂點為E,過坐標(biāo)原點O且與坐標(biāo)軸不重合的任意直線l與圓C2相交于點A,B,直線EA,EB與橢圓C1的另一個交點分別是點P,M.
(I)求橢圓C1的方程;
(Ⅱ)求△EPM面積最大時直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}的前n項和為Sn , 已知2Sn=3n+3.
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足anbn=log3an , 求{bn}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】長沙市物價監(jiān)督部門為調(diào)研某公司新開發(fā)上市的一種產(chǎn)品銷售價格的合理性,對某公司的該產(chǎn)品的銷量與價格進行了統(tǒng)計分析,得到如下數(shù)據(jù)和散點圖:
定價 | 10 | 20 | 30 | 40 | 50 | 60 |
年銷量 | 1150 | 643 | 424 | 262 | 165 | 86 |
14.1 | 12.9 | 12.1 | 11.1 | 10.2 | 8.9 |
(參考數(shù)據(jù): ,
)
(1)根據(jù)散點圖判斷, 與和與哪一對具有的線性相關(guān)性較強(給出判斷即可,不必說明理由)?
(2)根據(jù)(1)的判斷結(jié)果及數(shù)據(jù),建立關(guān)于的回歸方程(方程中的系數(shù)均保留兩位有效數(shù)字).
(3)定價為多少元/ 時,年銷售額的預(yù)報值最大?
附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com