【題目】大學(xué)先修課程,是在高中開設(shè)的具有大學(xué)水平的課程,旨在讓學(xué)有余力的高中生早接受大學(xué)思維方式、學(xué)習(xí)方法的訓(xùn)練,為大學(xué)學(xué)習(xí)乃至未來(lái)的職業(yè)生涯做好準(zhǔn)備.某高中成功開設(shè)大學(xué)先修課程已有兩年,共有250人參與學(xué)習(xí)先修課程.
(Ⅰ)這兩年學(xué)校共培養(yǎng)出優(yōu)等生150人,根據(jù)下圖等高條形圖,填寫相應(yīng)列聯(lián)表,并根據(jù)列聯(lián)表檢驗(yàn)?zāi)芊裨诜稿e(cuò)的概率不超過(guò)0.01的前提下認(rèn)為學(xué)習(xí)先修課程與優(yōu)等生有關(guān)系?
優(yōu)等生 | 非優(yōu)等生 | 總計(jì) | |
學(xué)習(xí)大學(xué)先修課程 | 250 | ||
沒有學(xué)習(xí)大學(xué)先修課程 | |||
總計(jì) | 150 |
(Ⅱ)某班有5名優(yōu)等生,其中有2名參加了大學(xué)生先修課程的學(xué)習(xí),在這5名優(yōu)等生中任選3人進(jìn)行測(cè)試,求這3人中至少有1名參加了大學(xué)先修課程學(xué)習(xí)的概率.
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
參考公式:,其中
【答案】(1)列聯(lián)表見解析 有關(guān)系(2)
【解析】
(1)根據(jù)優(yōu)等生的人數(shù)、學(xué)習(xí)大學(xué)先修課程的人數(shù),結(jié)合等高條形圖計(jì)算數(shù)值,填寫好表格,計(jì)算出的值,比較題目所給參考數(shù)據(jù),得出“在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為學(xué)習(xí)先修課程與優(yōu)等生有關(guān)系”這個(gè)結(jié)論.(2)利用列舉法,求得基本事件的眾數(shù)為種,其中“沒有學(xué)生參加大學(xué)先修課程學(xué)習(xí)” 的情況有種,利用對(duì)立事件的概率計(jì)算方法,求得至少有名參加了大學(xué)先修課程學(xué)習(xí)的概率.
(1)列聯(lián)表如下:
優(yōu)等生 | 非優(yōu)等生 | 總計(jì) | |
學(xué)習(xí)大學(xué)先修課程 | 50 | 200 | 250 |
沒有學(xué)習(xí)大學(xué)先修課程 | 100 | 900 | 1000 |
總計(jì) | 150 | 1100 | 1250 |
由列聯(lián)表可得,
因此在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為學(xué)習(xí)先修課程與優(yōu)等生有關(guān)系.
(2)在這5名優(yōu)等生中,記參加了大學(xué)先修課程的學(xué)習(xí)的2名學(xué)生為,,記沒有參加大學(xué)先修課程學(xué)習(xí)的3名學(xué)生為,,.
則所有的抽樣情況如下:共10種,
,, ,,,
,,,,,
其中沒有學(xué)生參加大學(xué)先修課程學(xué)習(xí)的情況有1種,為.
記事件為至少有1名學(xué)生參加了大學(xué)先修課程的學(xué)習(xí),則.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于數(shù)列,若存在常數(shù)M>0,對(duì)任意的n∈N*,恒有,則稱數(shù)列為B-數(shù)列.
(1)首項(xiàng)為1,公比q()的等比數(shù)列是否為B-數(shù)列?請(qǐng)說(shuō)明理由;
(2)設(shè)Sn是數(shù)列{xn}的前n項(xiàng)和,給出下列兩組論斷:
A組:①數(shù)列{xn}是B-數(shù)列,②數(shù)列{xn}不是B-數(shù)列
B組:①數(shù)列{Sn}是B-數(shù)列,②數(shù)列{Sn}不是B-數(shù)列
請(qǐng)以其中一組的一個(gè)論斷為條件,另一組的一個(gè)論斷為結(jié)論組成一個(gè)命題.判斷所給命題的真假,并證明你的結(jié)論.
(3)若數(shù)列{an}、都是B-數(shù)列,證明:數(shù)列{anbn}也是B-數(shù)列
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,直線的參數(shù)方程為(為參數(shù)).
(1)求與的交點(diǎn)的直角坐標(biāo);
(2)求上的點(diǎn)到直線的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),直線與直線平行,且過(guò)坐標(biāo)原點(diǎn),圓的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.
(1)求直線和圓的極坐標(biāo)方程;
(2)設(shè)直線和圓相交于點(diǎn)、兩點(diǎn),求的周長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,曲線的參數(shù)方程為(t為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程是,曲線的極坐標(biāo)方程是.
(1)求直線l和曲線的直角坐標(biāo)方程,曲線的普通方程;
(2)若直線l與曲線和曲線在第一象限的交點(diǎn)分別為P,Q,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)上的偶函數(shù),其圖象關(guān)于點(diǎn)對(duì)稱,且在區(qū)間上是單調(diào)函數(shù),則的值是( )
A. B. C. 或 D. 無(wú)法確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線C的參數(shù)方程為(為參數(shù)),以平面直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.
(1)求曲線C的極坐標(biāo)方程;
(2)過(guò)點(diǎn),傾斜角為的直線l與曲線C相交于M,N兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(其中 ,為自然對(duì)數(shù)的底數(shù)).
(Ⅰ)若函數(shù)無(wú)極值,求實(shí)數(shù)的取值范圍;
(Ⅱ)當(dāng)時(shí),證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某班制定了數(shù)學(xué)學(xué)習(xí)方案:星期一和星期日分別解決個(gè)數(shù)學(xué)問(wèn)題,且從星期二開始,每天所解決問(wèn)題的個(gè)數(shù)與前一天相比,要么“多一個(gè)”要么“持平”要么“少一個(gè)”,則在一周中每天所解決問(wèn)題個(gè)數(shù)的不同方案共有( )
A. 種 B. 種 C. 種 D. 種
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com