【題目】已知函數(shù)f(x)= sinωx+cosωx+c(ω>0,x∈R,c是常數(shù))圖象上的一個(gè)最高點(diǎn)為( ,1),與其相鄰的最低點(diǎn)是( ,﹣3).
(1)求函數(shù)f(x)的解析式及其對稱中心;
(2)在△ABC中,角A,B,C所對的邊分別為a,b,c,且 =﹣ ac,試求函數(shù)f(A)的取值范圍.

【答案】
(1)解:函數(shù)f(x)= sinωx+cosωx+c(ω>0,x∈R,c是常數(shù))

化簡得:f(x)=2sin(ωx+ )+c;

∵2sin(ωx+ )∈[﹣1,1],即f(x)的最大值為2+c.

函數(shù)f(x)圖象上的一個(gè)最高點(diǎn)為縱坐標(biāo)為1,即最大值為1,

則有:2+c=1,解得:c=﹣1.

∵最高點(diǎn)為( ,1),與其相鄰的最低點(diǎn)為( ,﹣3).

解得:T=π,

∵T=

∴ω=2

故得:函數(shù)f(x)=2sin(2x+ )﹣1;

對稱中心:2x+ =kπ,(k∈Z)

解得:x=

故得:函數(shù)f(x)的對稱中心坐標(biāo)為( ,﹣1)(k∈Z)


(2)解:由(1)可得函數(shù)f(A)=2sin(2A+ )﹣1;

=﹣ ac, ,

∴﹣accosB=﹣ ac,

可得:cosB= ,

故得:B=

∴A∈(0,

2A+ ∈( , ),

∴函數(shù)f(A)=2sin(2A+ )﹣1的值域(﹣3,1].

即函數(shù)f(A)的取值范圍是(﹣3,1]


【解析】(1)將函數(shù)f(x)化簡,圖象上的一個(gè)最高點(diǎn)為( ,1),可得C的值,與其相鄰的最低點(diǎn)是( ,﹣3).可得周期.從而得到f(x)的解析式.根據(jù)三角函數(shù)的圖象及性質(zhì)可得對稱中心;(2) =﹣ ac,利用夾角公式,可得cosB的值,即B的值,利用f(x)的解析式可求解.
【考點(diǎn)精析】掌握正弦函數(shù)的對稱性是解答本題的根本,需要知道正弦函數(shù)的對稱性:對稱中心;對稱軸

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)有兩個(gè)分廠生產(chǎn)某種零件,按規(guī)定內(nèi)徑尺寸(單位:mm)的值落在[29.94,30.06)的零件為優(yōu)質(zhì)品.從兩個(gè)分廠生產(chǎn)的零件中各抽出了500件,量其內(nèi)徑尺寸,得結(jié)果如下表:

甲廠:

分組

[29.86,29.90)

[29.90,29.94)

[29.94,29.98)

[29.98,30.02)

[30.02,30.06)

[30.06,30.10)

[30.10,30.14)

頻數(shù)

12

63

86

182

92

61

4

乙廠:

分組

[29.86,29.90)

[29.90,29.94)

[29.94,29.98)

[29.98,30.02)

[30.02,30.06)

[30.06,30.10)

[30.10,30.14)

頻數(shù)

29

71

85

159

76

62

18

(1)試分別估計(jì)兩個(gè)分廠生產(chǎn)的零件的優(yōu)質(zhì)品率;

(2)由以上統(tǒng)計(jì)數(shù)據(jù)填下面列聯(lián)表,并問是否有的把握認(rèn)為“兩個(gè)分廠生產(chǎn)的零件的質(zhì)量有差異”.

甲 廠

乙 廠

合計(jì)

優(yōu)質(zhì)品

非優(yōu)質(zhì)品

合計(jì)

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于x的不等式|x+a|≤b的解集為[﹣6,2].
(1)求實(shí)數(shù)a,b的值;
(2)若實(shí)數(shù)m,n滿足|am+n|< ,|m﹣bn|< ,求證:|n|<

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=xlnx+ax(a∈R).
(Ⅰ)當(dāng)a=0,求f(x)的最小值;
(Ⅱ)若函數(shù)g(x)=f(x)+lnx在區(qū)間[1,+∞)上為增函數(shù),求實(shí)數(shù)a的取值范圍;
(Ⅲ)過點(diǎn)P(1,﹣3)恰好能作函數(shù)y=f(x)圖象的兩條切線,并且兩切線的傾斜角互補(bǔ),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的左右焦點(diǎn)分別為,直線經(jīng)過橢圓的右焦點(diǎn)與橢圓交于兩點(diǎn),且.

(I)求直線的方程;

(II)已知過右焦點(diǎn)的動(dòng)直線與橢圓交于不同兩點(diǎn),是否存在軸上一定點(diǎn),使?(為坐標(biāo)原點(diǎn))若存在,求出點(diǎn)的坐標(biāo);若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|x2﹣1|+x2﹣kx.
(1)若k=2時(shí),求出函數(shù)f(x)的單調(diào)區(qū)間及最小值;
(2)若f(x)≥0恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,AD∥BC,AB⊥AD,AB⊥PA,BC=2AB=2AD=4BE,平面PAB⊥平面ABCD,
(Ⅰ)求證:平面PED⊥平面PAC;
(Ⅱ)若直線PE與平面PAC所成的角的正弦值為 ,求二面角A﹣PC﹣D的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)(xk)ex

(1)f(x)的單調(diào)區(qū)間;

(2)f(x)在區(qū)間[01]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,以O(shè)為原點(diǎn),Ox軸為極軸,單位長度不變,建立極坐標(biāo)系,直線l的極坐標(biāo)方程為:ρsin(θ+ )= ,曲線C的參數(shù)方程為:
(1)寫出直線l和曲線C的普通方程;
(2)若直線l和曲線C相交于A,B兩點(diǎn),定點(diǎn)P(﹣1,2),求線段|AB|和|PA||PB|的值.

查看答案和解析>>

同步練習(xí)冊答案