【題目】已知函數(shù)f(x)=(x-k)ex,
(1)求f(x)的單調(diào)區(qū)間;
(2)求f(x)在區(qū)間[0,1]上的最小值.
【答案】(1)f(x)的單調(diào)遞減區(qū)間是(-∞,k-1);單調(diào)遞增區(qū)間是(k-1,+∞);
(2)最小值為f(1)=(1-k)e
【解析】試題分析:(1)f′(x)=(x﹣k+1)ex,令f′(x)=0,得x=k﹣1.由此能求出f(x)的單調(diào)區(qū)間.
(2)當(dāng)k﹣1≤0時(shí),函數(shù)f(x)在區(qū)間[0,1]上遞增,f(x)min=f(0)=﹣k;當(dāng)1<k≤2時(shí),函數(shù)f(x)在區(qū)間[0,k﹣1]上遞減,(k﹣1,1]上遞增,;當(dāng)k>2時(shí),函數(shù)f(x)在區(qū)間[0,1]上遞減,f(x)min=f(1)=(1﹣k)e.
試題解析:
解:(1)f′(x)=(x-k+1)ex.
令f′(x)=0,得x=k-1.
當(dāng)x變化時(shí),f(x)與f′(x)的變化情況如下:
x | (-∞,k-1) | (k-1) | (k-1,+∞) |
f′(x) | - | 0 | + |
f(x) | -ek-1 |
所以,f(x)的單調(diào)遞減區(qū)間是(-∞,k-1);單調(diào)遞增區(qū)間是(k-1,+∞).
(2)當(dāng)k-1≤0,即k≤1時(shí),函數(shù)f(x)在[0,1]上單調(diào)遞增,
所以f(x)在區(qū)間[0,1]上的最小值為f(0)=-k.
當(dāng)0<k-1<1,即1<k<2時(shí),
由(1)知f(x)在[0,k-1)上單調(diào)遞減,在(k-1,1]上單調(diào)遞增,所以f(x)在區(qū)間[0,1]上的最小值為
f(k-1)=-ek-1.
當(dāng)k-1≥1,即k≥2時(shí),函數(shù)f(x)在[0,1]上單調(diào)遞減,
所以f(x)在區(qū)間[0,1]上的最小值為f(1)=(1-k)e.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線的極坐標(biāo)方程為,直線的參數(shù)方程為(為參數(shù), ).
(Ⅰ)把曲線的極坐標(biāo)方程化為直角坐標(biāo)方程,并說(shuō)明曲線的形狀;
(Ⅱ)若直線經(jīng)過(guò)點(diǎn),求直線被曲線截得的線段的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠家具車間造A、B型兩類桌子,每張桌子需木工和漆工兩道工序完成.已知木工做一張A、B型桌子分別需要1小時(shí)和2小時(shí),漆工油漆一張A、B型桌子分別需要3小時(shí)和1小時(shí);又知木工、漆工每天工作分別不得超過(guò)8小時(shí)和9小時(shí),而工廠造一張A、B型桌子分別獲利潤(rùn)2千元和3千元,試問(wèn)工廠每天應(yīng)生產(chǎn)A、B型桌子各多少?gòu)垼拍塬@得利潤(rùn)最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某造船公司年造船量是20艘,已知造船x艘的產(chǎn)值函數(shù)為R(x)=3 700x+45x2-10x3(單位:萬(wàn)元),成本函數(shù)為C(x)=460x-5 000(單位:萬(wàn)元).
(1)求利潤(rùn)函數(shù)P(x);(提示:利潤(rùn)=產(chǎn)值-成本)
(2)問(wèn)年造船量安排多少艘時(shí),可使公司造船的年利潤(rùn)最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知兩點(diǎn)A(1,2),B(3,1)到直線l距離分別是 , ﹣ ,則滿足條件的直線l共有( )條.
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓: ()的左右焦點(diǎn)分別為, ,下頂點(diǎn)為,直線的方程為.
(Ⅰ)求橢圓的離心率;
(Ⅱ)設(shè)為橢圓上異于其頂點(diǎn)的一點(diǎn), 到直線的距離為,且三角形的面積為.
(1)求橢圓的方程;
(2)若斜率為的直線與橢圓相切,過(guò)焦點(diǎn), 分別作, ,垂足分別為, ,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面內(nèi)有一個(gè)△ABC和一點(diǎn)O(如圖),線段OA,OB,OC的中點(diǎn)分別為E,F(xiàn),G,BC,CA,AB的中點(diǎn)分別為L(zhǎng),M,N,設(shè) = , = , = .
(1)試用 , , 表示向量 , , ;
(2)證明:線段EL,F(xiàn)M,GN交于一點(diǎn)且互相平分.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在數(shù)列{an}中,a1=2,an+1=4an﹣3n+1,n∈N*
(1)證明數(shù)列{an﹣n}為等比數(shù)列
(2)求數(shù)列{an}的前n項(xiàng)和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知平面內(nèi)的動(dòng)點(diǎn)P到定直線l:x=的距離與點(diǎn)P到定點(diǎn)F(,0)之比為.
(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)若點(diǎn)N為軌跡C上任意一點(diǎn)(不在x軸上),過(guò)原點(diǎn)O作直線AB,交(1)中軌跡C于點(diǎn)A、B,且直線AN、BN的斜率都存在,分別為k1、k2,問(wèn)k1·k2是否為定值?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com