【題目】平面內有一個△ABC和一點O(如圖),線段OA,OB,OC的中點分別為E,F,G,BC,CA,AB的中點分別為L,M,N,設 = , = , = .
(1)試用 , , 表示向量 , , ;
(2)證明:線段EL,FM,GN交于一點且互相平分.
【答案】
(1)解: =;
同理, ,
(2)證明:如圖,連接EN,NL,LG,GE,根據條件,則:
NE∥BO,且 ,LG∥BO,且 ;
∴NE∥LG,且NE=LG;
∴四邊形NLGE為平行四邊形;
∴線段El,GN交于一點且互相平分;
同理,線段EL,FM交于一點且互相平分;
∴線段EL,FM,GN交于一點且互相平分.
【解析】(1)根據向量的加法、數乘的幾何意義,以及向量加法的平行四邊形法則,并進行向量的數乘運算便可得到 ,從而同理可以用 分別表示出 ;(2)可連接EN,NL,LG,GE,根據三角形中位線的性質及平行四邊形的定義便可得到四邊形NLGE為平行四邊形,從而對角線EL,GN交于一點且互相平分,而同理可證明EL,FM相交于一點且互相平分,從而便得出線段EL,FM,GN交于一點且互相平分.
【考點精析】解答此題的關鍵在于理解向量的三角形法則的相關知識,掌握三角形加法法則的特點:首尾相連;三角形減法法則的特點:共起點,連終點,方向指向被減向量.
科目:高中數學 來源: 題型:
【題目】已知sinα+cosα= ,α∈(0, ),sin(β﹣ )= ,β∈( , ).
(1)求sin2α和tan2α的值;
(2)求cos(α+2β)的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=-x3+x2+(m2-1)x(x∈R),其中m>0.
(1)當m=1時,求曲線y=f(x)在點(1,f(1))處的切線斜率;
(2)求函數的單調區(qū)間與極值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】袋子中放有大小和形狀相同的小球若干,其中標號為0的小球1個,標號為1的小球1個,標號為2的小球2個.從袋子中不放回地隨機抽取小球兩個,每次抽取一個球,記第一次取出的小球標號為,第二次取出的小球標號為.
(1)記事件表示“”,求事件的概率;
(2)在區(qū)間內任取兩個實數,,求“事件恒成立”的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ax2+1(a>0),g(x)=x3+bx.
(1)若曲線y=f(x)與曲線y=g(x)在它們的交點(1,c)處具有公共切線,求a,b的值;
(2)當a=3,b=-9時,若函數f(x)+g(x)在區(qū)間[k,2]上的最大值為28,求k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】醫(yī)學上某種還沒有完全攻克的疾病,治療時需要通過藥物控制其中的兩項指標和.現有三種不同配方的藥劑,根據分析,三種藥劑能控制指標的概率分別為0.5,0.6,0.75,能控制指標的概率分別是0.6,0.5,0.4,能否控制指標與能否控制指標之間相互沒有影響.
(Ⅰ)求三種藥劑中恰有一種能控制指標的概率;
(Ⅱ)某種藥劑能使兩項指標和都得到控制就說該藥劑有治療效果.求三種藥劑中有治療效果的藥劑種數的分布列.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】把正整數排成如圖(a)的三角形陣,然后擦去第偶數行中的所有奇數,第奇數行中的所有偶數,可得如圖(b)三角形陣,現將圖(b)中的正整數按從小到大的順序構成一個數列{an},若ak=2017,則k= .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】微信是現代生活中進行信息交流的重要工具.據統(tǒng)計,某公司200名員工中90%的人使用微信,其中每天使用微信時間在一小時以內的有60人,其余的員工每天使用微信時間在一小時以上,若將員工分成青年(年齡小于40歲)和中年(年齡不小于40歲)兩個階段,那么使用微信的人中75%是青年人.若規(guī)定:每天使用微信時間在一小時以上為經常使用微信,那么經常使用微信的員工中都是青年人.
(1)若要調查該公司使用微信的員工經常使用微信與年齡的關系,列出并完成2×2列聯表:
(2)由列聯表中所得數據判斷,是否有99.9%的把握認為“經常使用微信與年齡有關”?
(3)采用分層抽樣的方法從“經常使用微信”的人中抽取6人,從這6人中任選2人,求選出的2人,均是青年人的概率.
附:
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com