【題目】設(shè)函數(shù)f(x)=-x3+x2+(m2-1)x(x∈R),其中m>0.
(1)當(dāng)m=1時,求曲線y=f(x)在點(diǎn)(1,f(1))處的切線斜率;
(2)求函數(shù)的單調(diào)區(qū)間與極值.
【答案】(1)曲線y=f(x)在點(diǎn)(1,f(1))處的切線斜率為1
(2)f(x)在(-∞,1-m)和(1+m,+∞)內(nèi)為減函數(shù);最大值為f(1+m)=m3+m2-;最小值為f(1-m)=-m3+m2-
【解析】試題分析:(1)根據(jù)導(dǎo)數(shù)幾何意義先求切線斜率f′(1),(2)先求導(dǎo)函數(shù)零點(diǎn)x=1-m或x=1+m.再列表分析導(dǎo)函數(shù)符號變化規(guī)律,確定單調(diào)區(qū)間及極值.
試題解析:(1)當(dāng)m=1時,f(x)=- x3+x2,
f′(x)=-x2+2x,故f′(1)=1.
所以曲線y=f(x)在點(diǎn)(1,f(1))處的切線的斜率為1.
(2)f′(x)=-x2+2x+m2-1.
令f′(x)=0,解得x=1-m或x=1+m.
因?yàn)閙>0,所以1+m>1-m.
當(dāng)x變化時,f′(x),f(x)的變化情況如下表:
所以f(x)在(-∞,1-m),(1+m,+∞)內(nèi)是減函數(shù),在(1-m,1+m)內(nèi)是增函數(shù).
函數(shù)f(x)在x=1-m處取得極小值f(1-m),且f(1-m)=- m3+m2-.
函數(shù)f(x)在x=1+m處取得極大值f(1+m),且f(1+m)=m3+m2-.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從甲、乙兩名學(xué)生中選拔一人參加射箭比賽,為此需要對他們的射箭水平進(jìn)行測試.現(xiàn)這兩名學(xué)生在相同條件下各射箭10次,命中的環(huán)數(shù)如表:
甲 | 8 | 9 | 7 | 9 | 7 | 6 | 10 | 10 | 8 | 6 |
乙 | 10 | 9 | 8 | 6 | 8 | 7 | 9 | 7 | 8 | 8 |
(1)計算甲、乙兩人射箭命中環(huán)數(shù)的平均數(shù)和標(biāo)準(zhǔn)差;
(2)比較兩個人的成績,然后決定選擇哪名學(xué)生參加射箭比賽.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠家具車間造A、B型兩類桌子,每張桌子需木工和漆工兩道工序完成.已知木工做一張A、B型桌子分別需要1小時和2小時,漆工油漆一張A、B型桌子分別需要3小時和1小時;又知木工、漆工每天工作分別不得超過8小時和9小時,而工廠造一張A、B型桌子分別獲利潤2千元和3千元,試問工廠每天應(yīng)生產(chǎn)A、B型桌子各多少張,才能獲得利潤最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)△ABC的內(nèi)角,A,B,C對邊的邊長分別為a,b,c,且acosB﹣bcosA= c.
(1)求 的值;
(2)求tan(A﹣B)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某造船公司年造船量是20艘,已知造船x艘的產(chǎn)值函數(shù)為R(x)=3 700x+45x2-10x3(單位:萬元),成本函數(shù)為C(x)=460x-5 000(單位:萬元).
(1)求利潤函數(shù)P(x);(提示:利潤=產(chǎn)值-成本)
(2)問年造船量安排多少艘時,可使公司造船的年利潤最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩點(diǎn)A(1,2),B(3,1)到直線l距離分別是 , ﹣ ,則滿足條件的直線l共有( )條.
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面內(nèi)有一個△ABC和一點(diǎn)O(如圖),線段OA,OB,OC的中點(diǎn)分別為E,F(xiàn),G,BC,CA,AB的中點(diǎn)分別為L,M,N,設(shè) = , = , = .
(1)試用 , , 表示向量 , , ;
(2)證明:線段EL,F(xiàn)M,GN交于一點(diǎn)且互相平分.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}的前n項(xiàng)和Sn滿足:Sn=n2 , 等比數(shù)列{bn}滿足:b2=2,b5=16
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)求數(shù)列{anbn}的前n項(xiàng)和Tn .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com