【題目】某大學(xué)棋藝協(xié)會(huì)定期舉辦“以棋會(huì)友”的競(jìng)賽活動(dòng),分別包括“中國(guó)象棋”、“圍棋”、“五子棋”、“國(guó)際象棋”四種比賽,每位協(xié)會(huì)會(huì)員必須參加其中的兩種棋類比賽,且各隊(duì)員之間參加比賽相互獨(dú)立;已知甲同學(xué)必選“中國(guó)象棋”,不選“國(guó)際象棋”,乙同學(xué)從四種比賽中任選兩種參與.
(1)求甲參加圍棋比賽的概率;
(2)求甲、乙兩人參與的兩種比賽都不同的概率.
【答案】(1); (2).
【解析】
(1)根據(jù)題意得到甲同學(xué)的選擇的情況,從而得到概率;
(2)記“中國(guó)象棋”、“圍棋”、“五子棋”、“國(guó)際象棋”分別為1,2,3,4,列出所有的情況,在得到符合要求的情況,由古典概型的公式,得到答案.
(1)依題意,甲同學(xué)必選“中國(guó)象棋”,不選“國(guó)際象棋”,
所以甲同學(xué)選擇的情況有“中國(guó)象棋”和“圍棋”,或“中國(guó)象棋”和“五子棋”,
故甲參加圍棋比賽的概率為;
(2)記“中國(guó)象棋”、“圍棋”、“五子棋”、“國(guó)際象棋”分別為1,2,3,4,
則所有的可能為,,,,,,,,,,,,
其中滿足條件的有,兩種,
故所求概率.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校在一次期末數(shù)學(xué)測(cè)試中,為統(tǒng)計(jì)學(xué)生的考試情況,從學(xué)校的2000名學(xué)生中隨機(jī)抽取50名學(xué)生的考試成績(jī),被測(cè)學(xué)生成績(jī)?nèi)拷橛?5分到145分之間(滿分150分),將統(tǒng)計(jì)結(jié)果按如下方式分成八組:第一組,,第二組,,第八組,,如圖是按上述分組方法得到的頻率分布直方圖的一部分.
(1)求第七組的頻率,并完成頻率分布直方圖;
(2)用樣本數(shù)據(jù)估計(jì)該校的2000名學(xué)生這次考試成績(jī)的平均分(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表該組數(shù)據(jù)平均值);
(3)若從樣本成績(jī)屬于第六組和第八組的所有學(xué)生中隨機(jī)抽取2名,求他們的分差的絕對(duì)值小于10分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在極坐標(biāo)系中,曲線的極坐標(biāo)方程為,直線的極坐標(biāo)方程為,設(shè)與交于、兩點(diǎn),中點(diǎn)為,的垂直平分線交于、.以為坐標(biāo)原點(diǎn),極軸為軸的正半軸建立直角坐標(biāo)系.
(1)求的直角坐標(biāo)方程與點(diǎn)的直角坐標(biāo);
(2)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),函數(shù)().
(1)討論的單調(diào)性;
(2)證明:當(dāng)時(shí),.
(3)證明:當(dāng)時(shí),.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)經(jīng)過(guò)點(diǎn)的直線與拋物線相交于、兩點(diǎn),經(jīng)過(guò)點(diǎn)的直線與拋物線相切于點(diǎn).
(1)當(dāng)時(shí),求的取值范圍;
(2)問(wèn)是否存在直線,使得成立,若存在,求出的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)求函數(shù)的單調(diào)區(qū)間和的極值;
(2)對(duì)于任意的,,都有,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐P-ABC中,已知,頂點(diǎn)P在平面ABC上的射影為的外接圓圓心.
(1)證明:平面平面ABC;
(2)若點(diǎn)M在棱PA上,,且二面角P-BC-M的余弦值為,試求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某印刷廠為了研究單冊(cè)書(shū)籍的成本(單位:元)與印刷冊(cè)數(shù)(單位:千冊(cè))之間的關(guān)系,在印制某種書(shū)籍時(shí)進(jìn)行了統(tǒng)計(jì),相關(guān)數(shù)據(jù)見(jiàn)下表:
印刷冊(cè)數(shù)(千冊(cè)) | |||||
單冊(cè)成本(元) |
根據(jù)以上數(shù)據(jù),技術(shù)人員分別借助甲、乙兩種不同的回歸模型,得到兩個(gè)回歸方程,方程甲:,方程乙:.
(1)為了評(píng)價(jià)兩種模型的擬合效果,完成以下任務(wù).
①完成下表(計(jì)算結(jié)果精確到);
印刷冊(cè)數(shù)(千冊(cè)) | ||||||
單冊(cè)成本(元) | ||||||
模型甲 | 估計(jì)值 | |||||
殘差 | ||||||
模型乙 | 估計(jì)值 | |||||
殘差 |
②分別計(jì)算模型甲與模型乙的殘差平方和,并通過(guò)比較,判斷哪個(gè)模型擬合效果更好.
(2)該書(shū)上市之后,受到廣大讀者熱烈歡迎,不久便全部售罄,于是印刷廠決定進(jìn)行二次印刷,根據(jù)市場(chǎng)調(diào)查,新需求量為千冊(cè),若印刷廠以每?jī)?cè)元的價(jià)格將書(shū)籍出售給訂貨商,求印刷廠二次印刷千冊(cè)獲得的利潤(rùn)?(按(1)中擬合效果較好的模型計(jì)算印刷單冊(cè)書(shū)的成本).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】概率論起源于博弈游戲.17世紀(jì),曾有一個(gè)“賭金分配“的問(wèn)題:博弈水平相當(dāng)?shù)募、乙兩人進(jìn)行博弈游戲,每局比賽都能分出勝負(fù),沒(méi)有平局.雙方約定,各出賭金48枚金幣,先贏3局者可獲得全部賭金;但比賽中途因故終止了,此時(shí)甲贏了2局,乙贏了1局.向這96枚金幣的賭金該如何分配?數(shù)學(xué)家費(fèi)馬和帕斯卡都用了現(xiàn)在稱之為“概率“的知識(shí),合理地給出了賭金分配方案.該分配方案是( )
A.甲48枚,乙48枚B.甲64枚,乙32枚
C.甲72枚,乙24枚D.甲80枚,乙16枚
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com