【題目】已知函數(shù)
(1)求函數(shù)的單調(diào)區(qū)間和的極值;
(2)對(duì)于任意的,,都有,求實(shí)數(shù)的取值范圍.
【答案】(1)見(jiàn)解析;(2)
【解析】
(1)對(duì)f(x)求導(dǎo),再求導(dǎo),得到二次導(dǎo)數(shù)恒大于0,又,得到及的x的范圍,即可得到函數(shù)的單調(diào)區(qū)間及極值.
(2)由題意,只需,結(jié)合(1)可得最小值為,比較與得到最大值,可求得結(jié)論.
(1)∵,,其中是的導(dǎo)函數(shù).
顯然,,因此單調(diào)遞增,
而,所以在上為負(fù)數(shù),在上為正數(shù),
因此在上單調(diào)遞減,在上單調(diào)遞增,
當(dāng)時(shí),取得極小值為f(0)=1,無(wú)極大值.
∴的極小值為1,無(wú)極大值.單增區(qū)間為,單減區(qū)間為.
(2)依題意,只需
由(1)知,在上遞減,在上遞增,
∴在上的最小值為;
最大值為和中的較大者
而 ,
因此,
∴在上的最大值為
所以,,解得或.
∴實(shí)數(shù)的取值范圍是:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,若方程有2個(gè)不同的實(shí)根,則實(shí)數(shù)的取值范圍是_____(結(jié)果用區(qū)間表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系內(nèi),動(dòng)點(diǎn)到定點(diǎn)的距離與到定直線(xiàn)距離之比為.
(Ⅰ)求動(dòng)點(diǎn)的軌跡的方程;
(Ⅱ)設(shè)點(diǎn)是軌跡上兩個(gè)動(dòng)點(diǎn)直線(xiàn)與軌跡的另一交點(diǎn)分別為且直線(xiàn)的斜率之積等于,問(wèn)四邊形的面積是否為定值?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,單位圓上有一點(diǎn),點(diǎn)以點(diǎn)為起點(diǎn)按逆時(shí)針?lè)较蛞悦棵?/span>弧度作圓周運(yùn)動(dòng),點(diǎn)的縱坐標(biāo)是關(guān)于時(shí)間的函數(shù),記作.
(1)當(dāng)時(shí),求;
(2)若將函數(shù)向左平移個(gè)單位長(zhǎng)度后,得到的曲線(xiàn)關(guān)于軸對(duì)稱(chēng),求的最小正值,并求此時(shí)在的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某大學(xué)棋藝協(xié)會(huì)定期舉辦“以棋會(huì)友”的競(jìng)賽活動(dòng),分別包括“中國(guó)象棋”、“圍棋”、“五子棋”、“國(guó)際象棋”四種比賽,每位協(xié)會(huì)會(huì)員必須參加其中的兩種棋類(lèi)比賽,且各隊(duì)員之間參加比賽相互獨(dú)立;已知甲同學(xué)必選“中國(guó)象棋”,不選“國(guó)際象棋”,乙同學(xué)從四種比賽中任選兩種參與.
(1)求甲參加圍棋比賽的概率;
(2)求甲、乙兩人參與的兩種比賽都不同的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為(其中為參數(shù),).在極坐標(biāo)系(以坐標(biāo)原點(diǎn)為極點(diǎn),以軸非負(fù)半軸為極軸)中,曲線(xiàn)的極坐標(biāo)方程為.
(1)求曲線(xiàn)的普通方程和曲線(xiàn)的直角坐標(biāo)方程;
(2)若曲線(xiàn)上恰有一個(gè)點(diǎn)到曲線(xiàn)的距離為1,求曲線(xiàn)的直角坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱ABC—A1B1C1中,AA1=AC,A1B⊥AC1,設(shè)O為AC1與A1C的交點(diǎn),點(diǎn)P為BC的中點(diǎn).求證:
(1)OP∥平面ABB1A1;
(2)平面ACC1⊥平面OCP.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底而為菱形,且菱形所在的平面與所在的平面相互垂直,,,,.
(1)求證:平面;
(2)求四棱錐的最長(zhǎng)側(cè)棱的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地區(qū)在一次考試后,從全體考生中隨機(jī)抽取44名,獲取他們本次考試的數(shù)學(xué)成績(jī)(x)和物理成績(jī)(y),繪制成如圖散點(diǎn)圖:
根據(jù)散點(diǎn)圖可以看出y與x之間有線(xiàn)性相關(guān)關(guān)系,但圖中有兩個(gè)異常點(diǎn)A,B.經(jīng)調(diào)查得知,A考生由于重感冒導(dǎo)致物理考試發(fā)揮失常,B考生因故未能參加物理考試.為了使分析結(jié)果更科學(xué)準(zhǔn)確,剔除這兩組數(shù)據(jù)后,對(duì)剩下的數(shù)據(jù)作處理,得到一些統(tǒng)計(jì)的值:其中xi,yi分別表示這42名同學(xué)的數(shù)學(xué)成績(jī)、物理成績(jī),i=1,2,…,42,y與x的相關(guān)系數(shù)r=0.82.
(1)若不剔除A,B兩名考生的數(shù)據(jù),用44組數(shù)據(jù)作回歸分析,設(shè)此時(shí)y與x的相關(guān)系數(shù)為r0.試判斷r0與r的大小關(guān)系,并說(shuō)明理由;
(2)求y關(guān)于x的線(xiàn)性回歸方程(系數(shù)精確到0.01),并估計(jì)如果B考生加了這次物理考試(已知B考生的數(shù)學(xué)成績(jī)?yōu)?/span>125分),物理成績(jī)是多少?(精確到個(gè)位);
(3)從概率統(tǒng)計(jì)規(guī)律看,本次考試該地區(qū)的物理成績(jī)ξ服從正態(tài)分布,以剔除后的物理成績(jī)作為樣本,用樣本平均數(shù)作為μ的估計(jì)值,用樣本方差s2作為σ2的估計(jì)值.試求該地區(qū)5000名考生中,物理成績(jī)位于區(qū)間(62.8,85.2)的人數(shù)Z的數(shù)學(xué)期望.
附:①回歸方程中:
②若,則
③11.2
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com