【題目】某公司即將推車一款新型智能手機,為了更好地對產(chǎn)品進行宣傳,需預(yù)估市民購買該款手機是否與年齡有關(guān),現(xiàn)隨機抽取了50名市民進行購買意愿的問卷調(diào)查,若得分低于60分,說明購買意愿弱;若得分不低于60分,說明購買意愿強,調(diào)查結(jié)果用莖葉圖表示如圖所示.

(1)根據(jù)莖葉圖中的數(shù)據(jù)完成列聯(lián)表,并判斷是否有95%的把握認(rèn)為市民是否購買該款手機與年齡有關(guān)?

(2)從購買意愿弱的市民中按年齡進行分層抽樣,共抽取5人,從這5人中隨機抽取2人進行采訪,求這2人都是年齡大于40歲的概率.

附: .

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

【答案】(1)詳見解析;(2) .

【解析】試題分析:(1)由莖葉圖能完成 列聯(lián)表,由列聯(lián)表求出 ,從而得到?jīng)]有 的把握認(rèn)為市民是否購買該款手機與年齡有關(guān).
(2)購買意愿弱的市民共有20人,抽樣比例為 ,所以年齡在20~40歲的抽取了2人,記為,年齡大于40歲的抽取了3人,記為,列出所有可能的情況,由古典概型可求其概率

試題解析:(1)由莖葉圖可得:

由列聯(lián)表可得: .

所以,沒有95%的把握認(rèn)為市民是否購買該款手機與年齡有關(guān).

(2)購買意愿弱的市民共有20人,抽樣比例為,

所以年齡在20~40歲的抽取了2人,記為

年齡大于40歲的抽取了3人,記為,

從這5人中隨機抽取2人,所有可能的情況為, , , , , ,共10種,

其中2人都是年齡大于40歲的有, , 3種,

所以概率為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】袋中共有8個球,其中3個紅球、2個白球、3個黑球.若從袋中任取3個球,則所取3個球中至多有1個紅球的概率是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax2+2x+c(a、c∈N*)滿足:①f(1)=5;②6<f(2)<11.
(1)求a、c的值;
(2)若對任意的實數(shù)x∈[ , ],都有f(x)﹣2mx≤1成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)奇函數(shù)定義在上,其導(dǎo)函數(shù)為,當(dāng)時, ,則不等式的解集為

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,從參加環(huán)保知識競賽的學(xué)生中抽出40名,將其成績(均為整數(shù))整理后畫出的頻率分布直方圖如下:

觀察圖形,回答下列問題:

(1)估計這次環(huán)保知識競賽成績的中位數(shù);

(2)從成績是80分以上(包括80分)的學(xué)生中選兩人,求他們在同一分?jǐn)?shù)段的概率?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校從參加高一年級期中考試的學(xué)生中隨機抽取60名學(xué)生,將其數(shù)學(xué)成績(均為整數(shù))分成六段[40,50),[50,60)…[90,100]后得到如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:

(1)求分?jǐn)?shù)在[70,80)內(nèi)的頻率,并補全這個頻率分布直方圖;
(2)用分層抽樣的方法在分?jǐn)?shù)段為[60,80)的學(xué)生中抽取一個容量為6的樣本,將該樣本看成一個總體,從中任取2人,求至多有1人在分?jǐn)?shù)段[70,80)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

1)若函數(shù)上為減函數(shù),求實數(shù)的最小值;

2)若存在,使成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=loga(x+1),g(x)=loga(4﹣2x),a>0且a≠1.
(1)求函數(shù)y=f(x)﹣g(x)的定義域;
(2)求使不等式f(x)>g(x)成立的實數(shù)x的取值范圍;
(3)求函數(shù)y=2f(x)﹣g(x)﹣f(1)的零點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)招聘中,依次進行A科、B科考試,當(dāng)A科合格時,才可考B科,且兩科均有一次補考機會,兩科都合格方通過.甲參加招聘,已知他每次考A科合格的概率均為 ,每次考B科合格的概率均為 .假設(shè)他不放棄每次考試機會,且每次考試互不影響.
(1)求甲恰好3次考試通過的概率;
(2)記甲參加考試的次數(shù)為ξ,求ξ的分布列和期望.

查看答案和解析>>

同步練習(xí)冊答案