【題目】設奇函數(shù)定義在上,其導函數(shù)為且,當時, ,則不等式的解集為( )
A. B.
C. D.
【答案】A
【解析】設g(x)= ,
∴g′(x)
∵f(x)是定義在(﹣π,0)∪(0,π)上的奇函數(shù),
故g(﹣x)===g(x)
∴g(x)是定義在(﹣π,0)∪(0,π)上的偶函數(shù).
∵當0<x<π時,f′(x)sinx﹣f(x)cosx<0
∴g'(x)<0,
∴g(x)在(0,π)上單調(diào)遞減,
∴g(x)在(﹣π,0)上單調(diào)遞增.
∵f()=0,
∴g()==0,
∵f(x)<2f()sinx,
即g()sinx>f(x);
①當sinx>0時,即x∈(0,π),g()>=g(x);
所以x∈(,π);
②當sinx<0時,即x∈(﹣π,0)時,g()=g(﹣)<=g(x);
所以x∈(﹣,0);
不等式f(x)<2f()sinx的解集為解集為(﹣,0)∪(,π).
故答案為:(﹣,0)∪(,π)
故答案為A。
科目:高中數(shù)學 來源: 題型:
【題目】對定義域分別為D1 , D2的函數(shù)y=f(x),y=g(x),規(guī)定:函數(shù)h(x)= ,f(x)=x﹣2(x≥1),g(x)=﹣2x+3(x≤2),則h(x)的單調(diào)減區(qū)間是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,拋物線y=1﹣x2與x軸所圍成的區(qū)域是一塊等待開墾的土地,現(xiàn)計劃在該區(qū)域內(nèi)圍出一塊矩形地塊ABCD作為工業(yè)用地,其中A、B在拋物線上,C、D在x軸上.已知工業(yè)用地每單位面積價值為3a元(a>0),其它的三個邊角地塊每單位面積價值a元.
(1)求等待開墾土地的面積;
(2)如何確定點C的位置,才能使得整塊土地總價值最大.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= .
(1)判斷f(x)在(0,+∞)的單調(diào)性;
(2)若x>0,證明:(ex﹣1)ln(x+1)>x2 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列類比推理的結(jié)論正確的是( )
①類比“實數(shù)的乘法運算滿足結(jié)合律”,得到猜想“向量的數(shù)量積運算滿足結(jié)合律”;
②類比“平面內(nèi),同垂直于一直線的兩直線相互平行”,得到猜想“空間中,同垂直于一直線的兩直線相互平行”;
③類比“設等差數(shù)列{an}的前n項和為Sn , 則S4 , S8﹣S4 , S12﹣S8成等差數(shù)列”,得到猜想“設等比數(shù)列{bn}的前n項積為Tn , 則T4 , , 成等比數(shù)列”;
④類比“設AB為圓的直徑,p為圓上任意一點,直線PA,PB的斜率存在,則kPA . kPB為常數(shù)”,得到猜想“設AB為橢圓的長軸,p為橢圓上任意一點,直線PA,PB的斜率存在,則kPA . kPB為常數(shù)”.
A.①②
B.③④
C.①④
D.②③
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司即將推車一款新型智能手機,為了更好地對產(chǎn)品進行宣傳,需預估市民購買該款手機是否與年齡有關,現(xiàn)隨機抽取了50名市民進行購買意愿的問卷調(diào)查,若得分低于60分,說明購買意愿弱;若得分不低于60分,說明購買意愿強,調(diào)查結(jié)果用莖葉圖表示如圖所示.
(1)根據(jù)莖葉圖中的數(shù)據(jù)完成列聯(lián)表,并判斷是否有95%的把握認為市民是否購買該款手機與年齡有關?
(2)從購買意愿弱的市民中按年齡進行分層抽樣,共抽取5人,從這5人中隨機抽取2人進行采訪,求這2人都是年齡大于40歲的概率.
附: .
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義在R上的函數(shù)f(x)滿足 , .
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)g(x)的單調(diào)區(qū)間;
(3)如果s、t、r滿足|s﹣r|≤|t﹣r|,那么稱s比t更靠近r.當a≥2且x≥1時,試比較 和ex﹣1+a哪個更靠近lnx,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ< )的圖象與x軸相鄰兩個交點間的距離為 ,且圖象上一個最低點為M( ,﹣2). (Ⅰ)求f(x)的解析式;
(Ⅱ)求f(x)的單調(diào)遞增區(qū)間;
(Ⅲ)當x∈[ , ]時,求f(x)的值域.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com