已知函數(shù)()
(1)若在點(diǎn)處的切線(xiàn)方程為,求的解析式及單調(diào)遞減區(qū)間;
(2)若在上存在極值點(diǎn),求實(shí)數(shù)的取值范圍.
(1),單調(diào)遞減區(qū)間有;(2)
解析試題分析:(1)由題設(shè)知,,解方程組可得的值,進(jìn)而確定函數(shù)的解析式及其導(dǎo)數(shù)的表達(dá)式,并由不等式的解得到函數(shù)據(jù)的單調(diào)遞減區(qū)間.
(2)函數(shù)在上存在極值點(diǎn)導(dǎo)函數(shù)在上存在零點(diǎn),且零點(diǎn)兩側(cè)導(dǎo)數(shù)值異號(hào),因?yàn)椋瑢?dǎo)函數(shù)的二次項(xiàng)系數(shù)為,所以要分與兩種情詋進(jìn)行討論,后者為一元二次方程的分布問(wèn)題.
試題解析:
(1)由已知可得
此時(shí), 4分
由得的單調(diào)遞減區(qū)間為; 7分
(2)由已知可得在上存在零點(diǎn)且在零點(diǎn)兩側(cè)值異號(hào)
⑴時(shí),,不滿(mǎn)足條件;
⑵時(shí),可得在上有解且
設(shè)
①當(dāng)時(shí),滿(mǎn)足在上有解
或此時(shí)滿(mǎn)足
②當(dāng)時(shí),即在上有兩個(gè)不同的實(shí)根
則無(wú)解
綜上可得實(shí)數(shù)的取值范圍為. 14分
考點(diǎn):1、導(dǎo)數(shù)的幾何意;2、導(dǎo)數(shù)在研究函數(shù)單調(diào)性與極值等性質(zhì)中的應(yīng)用;3、二次函數(shù)與一元二次方程.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)() =,g ()=+。
(1)求函數(shù)h ()=()-g ()的零點(diǎn)個(gè)數(shù),并說(shuō)明理由;
(2)設(shè)數(shù)列滿(mǎn)足,,證明:存在常數(shù)M,使得對(duì)于任意的,都有≤ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),,其中m∈R.
(1)若0<m≤2,試判斷函數(shù)f (x)=f1 (x)+f2 (x)的單調(diào)性,并證明你的結(jié)論;
(2)設(shè)函數(shù) 若對(duì)任意大于等于2的實(shí)數(shù)x1,總存在唯一的小于2的實(shí)數(shù)x2,使得g (x1) =" g" (x2) 成立,試確定實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
一個(gè)如圖所示的不規(guī)則形鐵片,其缺口邊界是口寬4分米,深2分米(頂點(diǎn)至兩端點(diǎn)所在直線(xiàn)的距離)的拋物線(xiàn)形的一部分,現(xiàn)要將其缺口邊界裁剪為等腰梯形.
(1)若保持其缺口寬度不變,求裁剪后梯形缺口面積的最小值;
(2)若保持其缺口深度不變,求裁剪后梯形缺口面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
根據(jù)統(tǒng)計(jì)資料,某工藝品廠的日產(chǎn)量最多不超過(guò)20件,每日產(chǎn)品廢品率與日產(chǎn)量(件)之間近似地滿(mǎn)足關(guān)系式(日產(chǎn)品廢品率).已知每生產(chǎn)一件正品可贏利2千元,而生產(chǎn)一件廢品則虧損1千元.(該車(chē)間的日利潤(rùn)日正品贏利額日廢品虧損額)
(1)將該車(chē)間日利潤(rùn)(千元)表示為日產(chǎn)量(件)的函數(shù);
(2)當(dāng)該車(chē)間的日產(chǎn)量為多少件時(shí),日利潤(rùn)最大?最大日利潤(rùn)是幾千元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(1)若直線(xiàn)與的反函數(shù)的圖象相切,求實(shí)數(shù)k的值;
(2)設(shè),討論曲線(xiàn)與曲線(xiàn)公共點(diǎn)的個(gè)數(shù);
(3)設(shè),比較與的大小,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(1)求的單調(diào)區(qū)間;
(2)若在上恒成立,求所有實(shí)數(shù)的值;
(3)對(duì)任意的,證明:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)R).
(1)若曲線(xiàn)在點(diǎn)處的切線(xiàn)與直線(xiàn)平行,求的值;
(2)在(1)條件下,求函數(shù)的單調(diào)區(qū)間和極值;
(3)當(dāng),且時(shí),證明:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)(e為自然對(duì)數(shù)的底數(shù)).
(1)設(shè)曲線(xiàn)處的切線(xiàn)為,若與點(diǎn)(1,0)的距離為,求a的值;
(2)若對(duì)于任意實(shí)數(shù)恒成立,試確定的取值范圍;
(3)當(dāng)上是否存在極值?若存在,請(qǐng)求出極值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com