【題目】若函數(shù)f(x)=asinωx+bcosωx(0<ω<5,ab≠0)的圖象的一條對稱軸方程是 ,函數(shù)f'(x)的圖象的一個對稱中心是 ,則f(x)的最小正周期是(
A.
B.
C.π
D.2π

【答案】C
【解析】解:∵函數(shù)f(x)=asinωx+bcosωx(0<ω<5,ab≠0)的圖象的一條對稱軸方程是 , ∴f(0)=f( ),即b=asin(ω )+bcos(ω )=a,∴f(x)=asinωx+acosωx= asin(ωx+ ).
又函數(shù)f'′(x)= aωcos(ωx+ )的圖象的一個對稱中心是
aωcos(ω + )=0,∴ω + =kπ+ ,k∈Z,即ω=8k+2,
故取ω=2,則f(x)的最小正周期是 =π,
故選:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=lnx,g(x)= x2﹣bx(b為常數(shù)).
(1)函數(shù)f(x)的圖象在點(1,f(1))處的切線與函數(shù)g(x)的圖象相切,求實數(shù)b的值;
(2)若函數(shù)h(x)=f(x)+g(x)在定義域上存在單調(diào)減區(qū)間,求實數(shù)b的取值范圍;
(3)若b≥2,x1 , x2∈[1,2],且x1≠x2 , 都有|f(x1)﹣f(x2)|>|g(x1)﹣g(x2)|成立,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的一個頂點為,焦點在軸上,離心率為

(1)求橢圓的方程;

(2)若橢圓與直線相交于不同的兩點,當(dāng)時,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知橢圓 + =1(a>b>0)的離心率為 ,C為橢圓上位于第一象限內(nèi)的一點.

(1)若點C的坐標(biāo)為(2, ),求a,b的值;
(2)設(shè)A為橢圓的左頂點,B為橢圓上一點,且 = ,求直線AB的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)x,y,z均為正實數(shù),且xyz=1,求證: + + ≥xy+yz+zx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著生活水平和消費觀念的轉(zhuǎn)變,“三品一標(biāo)”(無公害農(nóng)產(chǎn)品、綠色食品、有機食品和農(nóng)產(chǎn)品地理標(biāo)志)已成為不少人的選擇,為此某品牌植物油企業(yè)成立了有機食品快速檢測室,假設(shè)該品牌植物油每瓶含有機物A的概率為p(0<p<1),需要通過抽取少量油樣化驗來確定該瓶油中是否含有有機物A,若化驗結(jié)果呈陽性則含A,呈陰性則不含A.若多瓶該種植物油檢驗時,可逐個抽樣化驗,也可將若干瓶植物油的油樣混在一起化驗,僅當(dāng)至少有一瓶油含有有機物A時混合油樣呈陽性,若混合油樣呈陽性,則該組植物油必須每瓶重新抽取油樣并全部逐個化驗.
(1)若 ,試求3瓶該植物油混合油樣呈陽性的概率;
(2)現(xiàn)有4瓶該種植物油需要化驗,有以下兩種方案: 方案一:均分成兩組化驗;方案二:混在一起化驗;請問哪種方案更適合(即化驗次數(shù)的期望值更。,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓的離心率為,且過點.

(1)求橢圓的方程;

(2)設(shè)為橢圓上任一點, 為其右焦點,點滿足.

①證明: 為定值;

②設(shè)直線與橢圓有兩個不同的交點,與軸交于點.若成等差數(shù)列,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著共享單車的成功運營,更多的共享產(chǎn)品逐步走入大家的世界,共享汽車、共享籃球、共享充電寶等各種共享產(chǎn)品層出不窮.某公司隨即抽取人對共享產(chǎn)品是否對日常生活有益進行了問卷調(diào)查,并對參與調(diào)查的人中的性別以及意見進行了分類,得到的數(shù)據(jù)如下表所示:

總計

認(rèn)為共享產(chǎn)品對生活有益

認(rèn)為共享產(chǎn)品對生活無益

總計

(1)根據(jù)表中的數(shù)據(jù),能否在犯錯誤的概率不超過的前提下,認(rèn)為對共享產(chǎn)品的態(tài)度與性別有關(guān)系?

(2)現(xiàn)按照分層抽樣從認(rèn)為共享產(chǎn)品增多對生活無益的人員中隨機抽取人,再從人中隨機抽取人贈送超市購物券作為答謝,求恰有人是女性的概率.

參與公式:

臨界值表:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={y|y= },B={x|y=lg(x﹣2x2)},則R(A∩B)=(
A.[0,
B.(﹣∞,0)∪[ ,+∞)
C.(0,
D.(﹣∞,0]∪[ ,+∞)

查看答案和解析>>

同步練習(xí)冊答案