【題目】如圖,在平面直角坐標(biāo)系xOy中,已知橢圓 + =1(a>b>0)的離心率為 ,C為橢圓上位于第一象限內(nèi)的一點(diǎn).

(1)若點(diǎn)C的坐標(biāo)為(2, ),求a,b的值;
(2)設(shè)A為橢圓的左頂點(diǎn),B為橢圓上一點(diǎn),且 = ,求直線(xiàn)AB的斜率.

【答案】
(1)

解:由題意可知:橢圓的離心率e= = = ,則 = ,①

由點(diǎn)C在橢圓上,將(2, )代入橢圓方程, ,②

解得:a2=9,b2=5,

∴a=3,b= ,


(2)

解:方法一:由(1)可知: = ,則橢圓方程:5x2+9y2=5a2,

設(shè)直線(xiàn)OC的方程為x=my(m>0),B(x1,y1),C(x2,y2),

,消去x整理得:5m2y2+9y2=5a2,

∴y2= ,由y2>0,則y2= ,

= ,則AB∥OC,設(shè)直線(xiàn)AB的方程為x=my﹣a,

,整理得:(5m2+9)y2﹣10amy=0,

由y=0,或y1= ,

= ,則(x1+a,y1)=( x2 y2),

則y2=2y1

=2× ,(m>0),

解得:m= ,

則直線(xiàn)AB的斜率 = ;

方法二:由(1)可知:橢圓方程5x2+9y2=5a2,則A(﹣a,0),

B(x1,y1),C(x2,y2),

= ,則(x1+a,y1)=( x2,vy2),則y2=2y1,

由B,C在橢圓上,

,解得: ,

則直線(xiàn)直線(xiàn)AB的斜率k= =

直線(xiàn)AB的斜率


【解析】(1)利用拋物線(xiàn)的離心率求得 = ,將(2, )代入橢圓方程,即可求得a和b的值;(2)方法二:設(shè)直線(xiàn)OC的斜率,代入橢圓方程,求得C的縱坐標(biāo),則直線(xiàn)直線(xiàn)AB的方程為x=my﹣a,代入橢圓方程,求得B的縱坐標(biāo),由 = ,則直線(xiàn)直線(xiàn)AB的斜率k= = ;方法二:由 = ,y2=2y1 , 將B和C代入橢圓方程,即可求得C點(diǎn)坐標(biāo),利用直線(xiàn)的離心率公式即可求得直線(xiàn)AB的斜率.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】去年“十一”期間,昆曲高速公路車(chē)輛較多.某調(diào)查公司在曲靖收費(fèi)站從7座以下小型汽車(chē)中按進(jìn)收費(fèi)站的先后順序,每間隔50輛就抽取一輛的抽樣方法抽取40輛汽車(chē)進(jìn)行抽樣調(diào)查,將他們?cè)谀扯胃咚俟返能?chē)速()分成六段:,,,后,得到如圖的頻率分布直方圖.

(I)調(diào)查公司在抽樣時(shí)用到的是哪種抽樣方法?

(II)求這40輛小型汽車(chē)車(chē)速的眾數(shù)和中位數(shù)的估計(jì)值;

(III)若從這40輛車(chē)速在的小型汽車(chē)中任意抽取2輛,求抽出的2輛車(chē)車(chē)速都在的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某研究小組欲研究晝夜溫差大小與患感冒人數(shù)之間的關(guān)系,統(tǒng)計(jì)得到1至6月份每月9號(hào)的晝夜溫差與因患感冒而就診的人數(shù)的數(shù)據(jù),如下表:

日期

19號(hào)

2月9號(hào)

3月9號(hào)

4月9號(hào)

59號(hào)

6月9號(hào)

10

11

13

12

8

6

22

25

29

26

16

12

該研究小組的研究方案是:先從這6組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求回歸方程,再用之前被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).

(1)若選取1月和6月的數(shù)據(jù)作為檢驗(yàn)數(shù)據(jù),請(qǐng)根據(jù)剩下的2至5月的數(shù)據(jù),求出關(guān)于的線(xiàn)性回歸方程;(計(jì)算結(jié)果保留最簡(jiǎn)分?jǐn)?shù))

(2)若用(1)中所求的回歸方程作預(yù)報(bào),得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差不超過(guò)2人,則認(rèn)為得到的回歸方程是理想的,試問(wèn)該研究小組所得回歸方程是否理想?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的長(zhǎng)軸長(zhǎng)為6,離心率為 ,F(xiàn)2為橢圓的右焦點(diǎn).
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)點(diǎn)M在圓x2+y2=8上,且M在第一象限,過(guò)M作圓x2+y2=8的切線(xiàn)交橢圓于P,Q兩點(diǎn),判斷△PF2Q的周長(zhǎng)是否為定值并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)求處的切線(xiàn)方程;

(2)討論函數(shù)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= ,g(x)=lnx,其中e為自然對(duì)數(shù)的底數(shù).
(1)求函數(shù)y=f(x)g(x)在x=1處的切線(xiàn)方程;
(2)若存在x1 , x2(x1≠x2),使得g(x1)﹣g(x2)=λ[f(x2)﹣f(x1)]成立,其中λ為常數(shù),求證:λ>e;
(3)若對(duì)任意的x∈(0,1],不等式f(x)g(x)≤a(x﹣1)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)f(x)=asinωx+bcosωx(0<ω<5,ab≠0)的圖象的一條對(duì)稱(chēng)軸方程是 ,函數(shù)f'(x)的圖象的一個(gè)對(duì)稱(chēng)中心是 ,則f(x)的最小正周期是(
A.
B.
C.π
D.2π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本題滿(mǎn)分12分)全網(wǎng)傳播的融合指數(shù)是衡量電視媒體在中國(guó)網(wǎng)民中影響了的綜合指標(biāo).根據(jù)相關(guān)報(bào)道提供的全網(wǎng)傳播2015年某全國(guó)性大型活動(dòng)的省級(jí)衛(wèi)視新聞臺(tái)融合指數(shù)的數(shù)據(jù),對(duì)名列前20名的省級(jí)衛(wèi)視新聞臺(tái)的融合指數(shù)進(jìn)行分組統(tǒng)計(jì),結(jié)果如表所示.

組號(hào)

分組

頻數(shù)

1


2

2


8

3


7

4


3

)現(xiàn)從融合指數(shù)在內(nèi)的省級(jí)衛(wèi)視新聞臺(tái)中隨機(jī)抽取2家進(jìn)行調(diào)研,求至少有1家的融合指數(shù)在的概率;

)根據(jù)分組統(tǒng)計(jì)表求這20省級(jí)衛(wèi)視新聞臺(tái)的融合指數(shù)的平均數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,右焦點(diǎn)為。斜率為1的直線(xiàn)與橢圓交于兩點(diǎn),以為底邊作等腰三角形,頂點(diǎn)為

1)求橢圓的方程;

2)求的面積。

查看答案和解析>>

同步練習(xí)冊(cè)答案