【題目】以(a,1)為圓心,且與兩直線x﹣y+1=0及x﹣y﹣3=0同時相切的圓的標(biāo)準(zhǔn)方程為( )
A.x2+(y﹣1)2=2
B.(x﹣2)2+(y﹣1)2=2
C.x2+(y﹣1)2=8
D.(x﹣2)2+(y﹣1)2=8
【答案】B
【解析】解:因為(a,1)為圓心,且與兩直線x﹣y+1=0及x﹣y﹣3=0同時相切, 所以r= = ,解得a=2,
圓c的標(biāo)準(zhǔn)方程為(x﹣2)2+(y﹣1)2=2.
故選:B.
【考點精析】本題主要考查了圓的標(biāo)準(zhǔn)方程和圓的一般方程的相關(guān)知識點,需要掌握圓的標(biāo)準(zhǔn)方程:;圓心為A(a,b),半徑為r的圓的方程;圓的一般方程的特點:(1)①x2和y2的系數(shù)相同,不等于0.②沒有xy這樣的二次項;(2)圓的一般方程中有三個特定的系數(shù)D、E、F,因之只要求出這三個系數(shù),圓的方程就確定了;(3)、與圓的標(biāo)準(zhǔn)方程相比較,它是一種特殊的二元二次方程,代數(shù)特征明顯,圓的標(biāo)準(zhǔn)方程則指出了圓心坐標(biāo)與半徑大小,幾何特征較明顯才能正確解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4一5:不等式選講.
已知函數(shù).
(1)求的解集;
(2)設(shè)函數(shù),若對任意的都成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以原點為極點, 軸的正半軸為極軸,以相同的長度單位建立極坐標(biāo)系,已知直線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為.
(1)設(shè)為參數(shù),若,求直線的參數(shù)方程;
(2)已知直線與曲線交于,設(shè),且,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}前n項和
(1)求數(shù)列{an}的通項公式;
(2)若 ,求數(shù)列{bn}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地最近十年對某商品的需求量逐年上升,下表是部分統(tǒng)計數(shù)據(jù):
年份 | 2008 | 2010 | 2012 | 2014 | 2016 |
需要量(萬件) | 236 | 246 | 257 | 276 | 286 |
(1)利用所給數(shù)據(jù)求年需求量y與年份x之間的回歸直線方程 = x+ ;
(2)預(yù)測該地2018年的商品需求量(結(jié)果保留整數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正方形ABCD的邊長為1,弧BD是以點A為圓心的圓弧.
(1)在正方形內(nèi)任取一點M,求事件“|AM|≤1”的概率;
(2)用大豆將正方形均勻鋪滿,經(jīng)清點,發(fā)現(xiàn)大豆一共28粒,其中有22粒落在圓中陰影部分內(nèi),請據(jù)此估計圓周率π的近似值(精確到0.01).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】解答
(1)將一顆骰子(一種各個面上分別標(biāo)有1,2,3,4,5,6個點的正方體玩具)先后拋擲2次,以分別得到的點數(shù)(m,n)作為點P的坐標(biāo)(m,n),求:點P落在區(qū)域 內(nèi)的概率;
(2)在區(qū)間[1,6]上任取兩個實數(shù)(m,n),求:使方程x2+mx+n2=0有實數(shù)根的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,a、b、c分別是角A、B、C的對邊,如果a,b,c成等差數(shù)列,B=60°,△ABC的面積為3 ,那么b等于( )
A.2
B.2
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com