【題目】某棋類游戲的規(guī)則如下:棋子的初始位置在起點處,玩家每擲出一枚骰子,朝上一面的點數(shù)即為向終點方向前進的格子數(shù),(比如玩家一開始擲出的骰子點數(shù)為3,則走到炸彈所在位置),若踩到炸彈則返回起點重新開始,若達到終點則游戲結(jié)束.現(xiàn)在已知小明擲完三次骰子后游戲恰好結(jié)束,則所有不同的情況種數(shù)__________.

.

【答案】21

【解析】種數(shù)有(3,4,5),(3,6,3),(3,5,4),(1,3,5),(1,4,4),(1,5,3),(1,6,2),(2,2,5),(2,3,4,),(2,4,3),(2,5,2),(2,6,1),(4,1,4),(4,2,3),(4,3,2),(4,4,1),(5,1,3),(5,2,2),(5,3,1),(6,1,2),(6,2,1).共21種。

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某廠有容量300噸的水塔一個,每天從早六點到晚十點供應(yīng)生活和生產(chǎn)用水,已知:該廠生活用水每小時10噸,工業(yè)用水總量與時間單位:小時,規(guī)定早晨六點時的函數(shù)關(guān)系為,水塔的進水量有10級,第一級每小時進水10噸,以后每提高一級, 進水量增加10噸.若某天水塔原有水100噸,在供應(yīng)同時打開進水管.問該天進水量應(yīng)選擇幾級,既能保證該廠用水即水塔中水不空,又不會使水溢出?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題共13分)根據(jù)以往的成績記錄,甲、乙兩名隊員射擊擊中目標靶的環(huán)數(shù)的頻率分布情況如圖所示

1)求上圖中的值;

2)甲隊員進行一次射擊,求命中環(huán)數(shù)大于7環(huán)的概率(頻率當作概率使用);

3)由上圖判斷甲、乙兩名隊員中,哪一名隊員的射擊成績更穩(wěn)定(結(jié)論不需證明)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)yAsin(ωxφ)(A>0,ω>0)的圖象過點P ,圖象與P點最近的一個最高點坐標為 .

(1)求函數(shù)解析式;

(2)求函數(shù)的最大值,并寫出相應(yīng)的x的值;

(3)求使y≤0時,x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)某大學的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結(jié)論中不正確的是( )

A. yx具有正的線性相關(guān)關(guān)系

B. 若給變量x一個值,由回歸直線方程=0.85x-85.71得到一個,則為該統(tǒng)計量中的估計值

C. 若該大學某女生身高增加1 cm,則其體重約增加0.85 kg

D. 若該大學某女生身高為170 cm,則可斷定其體重必為58.79 kg

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國上是世界嚴重缺水的國家,城市缺水問題較為突出,某市政府為了鼓勵居民節(jié)約用水,計劃在本市試行居民生活用水定額管理,即確定一個合理的居民月用水量標準(噸),用水量不超過的部分按平價收費,超過的部分按議價收費,為了了解全市民月用水量的分布情況,通過抽樣,獲得了100位居民某年的月用水量(單位:噸),將數(shù)據(jù)按照, ,…, 分成9組,制成了如圖所示的頻率分布直方圖.

(Ⅰ)求直方圖中 的值;

(Ⅱ)已知該市有80萬居民,估計全市居民中月均用水量不低于3噸的人數(shù),并說明理由;

(Ⅲ)若該市政府希望使的居民每月的用水量不超過標準(噸),估計的值,并說明理由;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)關(guān)于x的一元二次方程x2+2ax+b2=0.

(1)若a是從0,1,2,3四個數(shù)中任取的一個數(shù),b是從0,1,2三個數(shù)中任取的一個數(shù),求上述方程有實根的概率.

(2)若a是從區(qū)間[0,3]任取的一個數(shù),b是從區(qū)間[0,2]任取的一個數(shù),求上述方程有實根的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中

1在區(qū)間上具有時間的單調(diào)性,求實數(shù)的取值范圍;

2,且函數(shù)的最小值為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,某市園林局準備綠化一塊直徑為的半圓空地,以外的地方種草,的內(nèi)接正方形為一水池,其余的地方種花,若為定值),,設(shè)的面積為,正方形的面積為

(1)用表示;

(2)當為何值時,取得最大值,并求出此最大值.

查看答案和解析>>

同步練習冊答案