【題目】設關于x的一元二次方程x2+2ax+b2=0.
(1)若a是從0,1,2,3四個數(shù)中任取的一個數(shù),b是從0,1,2三個數(shù)中任取的一個數(shù),求上述方程有實根的概率.
(2)若a是從區(qū)間[0,3]任取的一個數(shù),b是從區(qū)間[0,2]任取的一個數(shù),求上述方程有實根的概率.
【答案】(1)(2)
【解析】試題分析:(1)由一元二次方程的判別式大于等于0得到方程有實數(shù)根的充要條件為a≥b,用列舉法求出a從0,1,2,3四個數(shù)中任取的一個數(shù),b從0,1,2三個數(shù)中任取的一個數(shù)的所有基本事件個數(shù),查出滿足a≥b的事件數(shù),然后直接利用古典概型概率計算公式求解;(2)由題意求出點(a,b)所構成的矩形面積,再由線性規(guī)劃知識求出滿足a≥b的區(qū)域面積,由測度比是面積比求概率
試題解析:(1)設事件A表示x+2ax+b=0,有實數(shù)根,當a≥0,b≥0時,方程x+2ax+b=0有實數(shù)根的充要條件是(2a)-4b≥0得a≥b
基本事件有12個(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2)第一個數(shù)表示a的取值,第二個數(shù)表示b的取值,事件A包含有9個基本事件(0,0),(1,0),(1,1),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2)事件A發(fā)生的概率為P(A)==
(2)實驗的全部結果所構成的區(qū)域為
構成事件A的區(qū)域為
所求的概率為P=
方程有實數(shù)根的概率P==
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù).
(1)求函數(shù)的單調區(qū)間;
(2)當時,是否存在整數(shù),使不等式恒成立?若存在,求整數(shù)的值;若不存在,則說明理由;
(3)關于的方程在上恰有兩個相異實根,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知三棱柱ABC-A1B1C1中,側棱垂直于底面,AC=BC,點D是AB的中點.
(1)求證:BC1∥平面CA1D;(2)若底面ABC為邊長為2的正三角形,BB1=求三棱錐B1-A1DC的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某棋類游戲的規(guī)則如下:棋子的初始位置在起點處,玩家每擲出一枚骰子,朝上一面的點數(shù)即為向終點方向前進的格子數(shù),(比如玩家一開始擲出的骰子點數(shù)為3,則走到炸彈所在位置),若踩到炸彈則返回起點重新開始,若達到終點則游戲結束.現(xiàn)在已知小明擲完三次骰子后游戲恰好結束,則所有不同的情況種數(shù)為__________.
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點是橢圓上任意一點,點到直線:的距離為,到點的距離為,且,直線與橢圓交于不同兩點、(、都在軸上方),且.
(1)求橢圓的方程;
(2)當為橢圓與軸正半軸的交點時,求直線方程;
(3)對于動直線,是否存在一個定點,無論如何變化,直線總經(jīng)過此定點?若存在,求出該定點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于無窮數(shù)列和函數(shù),若,則稱是數(shù)列的母函數(shù).
(Ⅰ)定義在上的函數(shù)滿足:對任意,都有,且;又數(shù)列滿足.
(1)求證: 是數(shù)列的母函數(shù);
(2)求數(shù)列的前項和.
(Ⅱ)已知是數(shù)列的母函數(shù),且.若數(shù)列的前項和為,求證: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù), 其中,
(1)若是函數(shù)的極值點,求實數(shù)的值及的單調區(qū)間;
(2)若對任意的, 使得恒成立,且,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某高校大一新生中的6名同學打算參加學校組織的“雅荷文學社”、“青春風街舞社”、“羽乒協(xié)會”、“演講團”、“吉他協(xié)會”五個社團,若每名同學必須參加且只能參加1個社團且每個社團至多兩人參加,則這6個人中至多有1人參加“演講團”的不同參加方法數(shù)為( )
A. 4680 B. 4770 C. 5040 D. 5200
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】亳州某商場舉行購物抽獎活動,規(guī)定每位顧客從裝有編號為0,1,2,3四個相同小求的抽獎箱中,每次取出一球,記下編號后放回,連續(xù)取兩次,若取出的兩個小球號碼相加之和等于6,則中一等獎;等于5中二等獎;等于4或3中三等獎.
(1)求中三等獎的概率;
(2)求不中獎的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com