【題目】已知某校5個學生的數(shù)學和物理成績如表

學生的編號i

1

2

3

4

5

數(shù)學xi

80

75

70

65

60

物理yi

70

66

68

64

62

(Ⅰ)假設在對這5名學生成績進行統(tǒng)計時,把這5名學生的物理成績搞亂了,數(shù)學成績沒出現(xiàn)問題,問:恰有2名學生的物理成績是自己的實際分數(shù)的概率是多少?
(Ⅱ)通過大量事實證明發(fā)現(xiàn),一個學生的數(shù)學成績和物理成績具有很強的線性相關關系的,在上述表格是正確的前提下,用x表示數(shù)學成績,用y表示物理成績,求y與x的回歸方程;
參考公式: = ,

【答案】解:(Ⅰ)由題意知本題是一個等可能事件的概率, 試驗發(fā)生包含的事件是A55 ,
滿足條件的事件是恰好有兩個是自己的實際分,共有2C52
∴恰有兩個人是自己的實際分的概率是 = ;
(Ⅱ) =70, =66,
= =0.36,
=40.8,
∴回歸直線方程為 =0.36x+40.8
【解析】(Ⅰ)本題是一個等可能事件的概率,試驗發(fā)生包含的事件是A55 , 滿足條件的事件是恰好有兩個是自己的實際分,共有2C55 , 根據(jù)等可能事件的概率得到結果.(Ⅱ)分別做出橫標和縱標的平均數(shù),利用最小二乘法做出b的值,再做出a的值,寫出線性回歸方程,得到結果.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知復數(shù)z=(a2﹣7a+6)+(a2﹣5a﹣6)i(a∈R)
(1)若復數(shù)z為純虛數(shù),求實數(shù)a的值;
(2)若復數(shù)z在復平面內的對應點在第四象限,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某班主任對全班50名學生學習積極性和對待班級工作的態(tài)度進行了調查,統(tǒng)計數(shù)據(jù)如下表所示:


積極參加班級工作

不太主動參加班級工作

合計

學習積極性高

18

7

25

學習積極性一般

6

19

25

合計

24

26

50

(1)如果隨機抽查這個班的一名學生,那么抽到積極參加班級工作的學生的概率是多少?抽到不太主動參加班級工作且學習積極性一般的學生的概率是多少?

(2)試運用獨立性檢驗的思想方法點撥:學生的學習積極性與對待班級工作的態(tài)度是否有關系?并說明理由.(參考下表)

P(K2≥k)

050

040

025

015

010

005

0025

0010

0005

0001

k

0455

0708

1323

2072

2706

3841

5024

6635

7879

10828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= ,(ω>0),其最小正周期為
(1)求f(x)的表達式;
(2)將函數(shù)f(x)的圖象向右平移 個單位,再將圖象上各點的橫坐標伸長到原來的4倍(縱坐標不變),得到函數(shù)y=g(x)的圖象,若關于x的方程g(x)+m=0在區(qū)間 上有且只有一個實數(shù)解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將函數(shù)的圖象的縱坐標不變,橫坐標縮短為原來的,得到函數(shù)的圖象.已知函數(shù).

(1)若函數(shù)在區(qū)間上的最大值為,求的值;

(2)設函數(shù),證明:對任意,都存在,使得上恒成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,菱形與正三角形所在平面互相垂直, 平面,且 .

(1)求證: 平面;

2)若,求幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將函數(shù)y=sin(2x﹣ )的圖象先向左平移 個單位,再將圖象上各點的橫坐標變?yōu)樵瓉淼? 倍(縱坐標不變),那么所得圖象的解析式為y=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=gx)=1-ax2

(1)若函數(shù)fx)和gx)的圖象在x=1處的切線平行,求a的值;

(2)當x∈[0,1]時,不等式fx)≤gx)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,斜三棱柱中,側面與側面都是菱形, ,

)求證:

(Ⅱ)若,求直線與平面所成角的正弦值.

查看答案和解析>>

同步練習冊答案