【題目】將函數(shù)的圖象的縱坐標不變,橫坐標縮短為原來的,得到函數(shù)的圖象.已知函數(shù).
(1)若函數(shù)在區(qū)間上的最大值為,求的值;
(2)設(shè)函數(shù),證明:對任意,都存在,使得在上恒成立.
【答案】(1) ;(2)證明見解析.
【解析】試題分析:
(1)構(gòu)造函數(shù),分類討論函數(shù)的最大值可得.
(2)由題意可知函數(shù)與的圖象只有一個交點,結(jié)合交點橫坐標的范圍即可證得題中的結(jié)論.
試題解析:
(1)由題可得, .
, , ,
當(dāng)即時, ,此方程無實數(shù)解.
當(dāng)即時, ,∴,又,則不合題意.
當(dāng)即時, ,∴.
綜上, .
(2)∵在上遞減, 在上遞增,在上遞減,
且, ,∴與的圖象只有一個交點.
設(shè)這個交點的橫坐標為,
則由圖可知,當(dāng)時, ,∴;當(dāng)時, ,∴.
故對任意,都存在,使得在上恒成立.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,某拋物線的頂點為原點,焦點為圓心,經(jīng)過點的直線交圓于, 兩點,交此拋物線于, 兩點,其中, 在第一象限, , 在第二象限.
(1)求該拋物線的方程;
(2)是否存在直線,使是與的等差中項?若存在,求直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)
某市為增強市民的環(huán)境保護意識,面向全市征召義務(wù)宣傳志愿者.現(xiàn)從符合條件的志愿者中隨機抽取100名按年齡分組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示.
(1)若從第3,4,5組中用分層抽樣的方法抽取6名志愿者參廣場的宣傳活動,應(yīng)從第3,4,5組各抽取多少名志愿者?
(2)在(1)的條件下,該縣決定在這6名志愿者中隨機抽取2名志愿者介紹宣傳經(jīng)驗,求第4組至少有一名志愿者被抽中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)
某企業(yè)有甲、乙兩個研發(fā)小組.為了比較他們的研發(fā)水平,現(xiàn)隨機抽取這兩個小組往年研發(fā)新產(chǎn)品的結(jié)果如下:(a,b),(a,),(a,b),(,b),(,),(a,b),(a,b),(a,),(,b),(a,),(,),(a,b),(a,),(,b),(a,b).其中a,分別表示甲組研發(fā)成功和失敗;b,分別表示乙組研發(fā)成功和失。
(I)若某組成功研發(fā)一種新產(chǎn)品,則給該組記1分,否則記0分.試計算甲、乙兩組研發(fā)新產(chǎn)品的成績的平均數(shù)和方差,并比較甲、乙兩組的研發(fā)水平;
(II)若該企業(yè)安排甲、乙兩組各自研發(fā)一種新產(chǎn)品,試估計恰有一組研發(fā)成功的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在[﹣1,1]上的函數(shù)f(x)滿足:①對任意a,b∈[﹣1,1],且a+b≠0,都有 >0成立;②f(x)在[﹣1,1]上是奇函數(shù),且f(1)=1.
(1)求證:f(x)在[﹣1,1]上是單調(diào)遞增函數(shù);
(2)解關(guān)于x不等式f(x)<f( x+1);
(3)若f(x)≤m2﹣2am﹣2對所有的x∈[﹣1,1]及a∈[﹣1,1]恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某校5個學(xué)生的數(shù)學(xué)和物理成績?nèi)绫?
學(xué)生的編號i | 1 | 2 | 3 | 4 | 5 |
數(shù)學(xué)xi | 80 | 75 | 70 | 65 | 60 |
物理yi | 70 | 66 | 68 | 64 | 62 |
(Ⅰ)假設(shè)在對這5名學(xué)生成績進行統(tǒng)計時,把這5名學(xué)生的物理成績搞亂了,數(shù)學(xué)成績沒出現(xiàn)問題,問:恰有2名學(xué)生的物理成績是自己的實際分數(shù)的概率是多少?
(Ⅱ)通過大量事實證明發(fā)現(xiàn),一個學(xué)生的數(shù)學(xué)成績和物理成績具有很強的線性相關(guān)關(guān)系的,在上述表格是正確的前提下,用x表示數(shù)學(xué)成績,用y表示物理成績,求y與x的回歸方程;
參考公式: = , .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,O為坐標原點,已知向量 =(﹣1,2),又點A(8,0),B(n,t),C(ksinθ,t),θ∈R.
(1)若 ⊥ ,且 ,求向量 ;
(2)若向量 與向量 共線,常數(shù)k>0,求f(θ)=tsinθ的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(Ⅰ)設(shè)z=1+i(i是虛數(shù)單位),求 +z2的值; (Ⅱ)設(shè)x,y∈R,復(fù)數(shù)z=x+yi,且滿足|z|2+(z+ )i= ,試求x,y的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com