【題目】下列判斷正確的是(

A.線性回歸直線必經(jīng)過點,,中心點

B.從獨立性檢驗可知有99%的把握認(rèn)為吃地溝油與患胃腸癌有關(guān)系時,我們就說如果某人吃地溝油,那么他有99%可能患胃腸癌

C.若兩個隨機變量的線性相關(guān)性越強,則相關(guān)系數(shù)的絕對值越接近于1

D.將一組數(shù)據(jù)的每一個數(shù)據(jù)都加上或減去同一個常數(shù)后,其方差也要加上或減去這個常數(shù)

【答案】AC

【解析】

根據(jù)線性回歸直線的性質(zhì)可判斷A;由獨立性檢驗知識可判斷B;由相關(guān)系數(shù)的概念可判斷C;由方差的定義可判斷D;

對于線性回歸方程,直線必經(jīng)過樣本中心點,故A正確;

的把握認(rèn)為吃地溝油與患胃腸癌有關(guān)系時,但并不代表若某一個人吃地溝油,他有的可能患胃腸癌,故B錯誤;

由相關(guān)系數(shù)的概念知兩個隨機變量的線性相關(guān)性越強,相關(guān)系數(shù)的絕對值越接近于1,故C正確;

由方差的定義得將一組數(shù)據(jù)中的每一個數(shù)據(jù)都加上或減去同一個常數(shù)后,方差恒不變,故D錯誤;

故選:AC.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在疫情這一特殊時期,教育行政部門部署了停課不停學(xué)的行動,全力幫助學(xué)生在線學(xué)習(xí).復(fù)課后進(jìn)行了摸底考試,某校數(shù)學(xué)教師為了調(diào)查高三學(xué)生這次摸底考試的數(shù)學(xué)成績與在線學(xué)習(xí)數(shù)學(xué)時長之間的相關(guān)關(guān)系,對在校高三學(xué)生隨機抽取45名進(jìn)行調(diào)查.知道其中有25人每天在線學(xué)習(xí)數(shù)學(xué)的時長是不超過1小時的,得到了如下的等高條形圖:

)是否有的把握認(rèn)為高三學(xué)生的這次摸底考試數(shù)學(xué)成績與其在線學(xué)習(xí)時長有關(guān);

)將頻率視為概率,從全校高三學(xué)生這次數(shù)學(xué)成績超過120分的學(xué)生中隨機抽取10人,求抽取的10人中每天在線學(xué)習(xí)時長超過1小時的人數(shù)的數(shù)學(xué)期望和方差.

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某媒體對男女延遲退休這一公眾關(guān)注的問題進(jìn)行了民意調(diào)查,下表是在某單位調(diào)查后得到的數(shù)據(jù)(人數(shù))

贊同

反對

合計

5

6

11

11

3

14

合計

16

9

25

1)能否有90%以上的把握認(rèn)為對這一問題的看法與性別有關(guān)?

2)進(jìn)一步調(diào)查:

①從贊同男女延遲退休人中選出人進(jìn)行陳述發(fā)言,求事件男士和女士各至少有人發(fā)言的概率;

②從反對男女延遲退休人中選出人進(jìn)行座談,設(shè)選出的人中女士人數(shù)為,求的分布列和數(shù)學(xué)期望.

附:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

(1)求函數(shù)的極值點個數(shù);

(2)若,證明 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】焦點在x軸上的橢圓C經(jīng)過點,橢圓C的離心率為,是橢圓的左、右焦點,P為橢圓上任意點.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)若點M的中點(O為坐標(biāo)原點),過M且平行于OP的直線l交橢圓CA,B兩點,是否存在實數(shù),使得;若存在,請求出的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某品牌經(jīng)銷商在一廣場隨機采訪男性和女性用戶各50名,其中每天玩微信超過6小時的用戶列為“微信控”,否則稱其為“非微信控”,調(diào)查結(jié)果如下:

微信控

非微信控

合計

男性

26

24

50

女性

30

20

50

合計

56

44

100

(1)根據(jù)以上數(shù)據(jù),能否有95%的把握認(rèn)為“微信控”與“性別”有關(guān)?

(2)現(xiàn)從調(diào)查的女性用戶中按分層抽樣的方法選出5人,求所抽取的5人中“微信控”和“非微信控”的人數(shù);

(3)從(2)中抽取的5位女性中,再隨機抽取3人贈送禮品,試求抽取3人中恰有2人位“微信控”的概率.

參考公式: ,其中.

參考數(shù)據(jù):

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.455

0.708

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市為了鼓勵市民節(jié)約用電,實行“階梯式”電價,將該市每戶居民的月用電量劃分為三檔,月用電量不超過200度的部分按元/度收費,超過200度但不超過400度的部分按元/度收費,超過400度的部分按1.0元/度收費.

(Ⅰ)求某戶居民用電費用(單位:元)關(guān)于月用電量(單位:度)的函數(shù)解析式;

(Ⅱ)為了了解居民的用電情況,通過抽樣,獲得了今年1月份100戶居民每戶的用電量,統(tǒng)計分析后得到如圖所示的頻率分布直方圖,若這100戶居民中,今年1月份用電費用不超過260元的占,求, 的值;

(Ⅲ)在滿足(Ⅱ)的條件下,若以這100戶居民用電量的頻率代替該月全市居民用戶用電量的概率,且同組中的數(shù)據(jù)用該組區(qū)間的中點代替,記為該居民用戶1月份的用電費用,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地政府為科技興市,欲將如圖所示的一塊不規(guī)則的非農(nóng)業(yè)用地規(guī)劃建成一個矩形的高科技工業(yè)園區(qū).已知,,,曲線段是以點為頂點且開口向上的拋物線的一段.如果要使矩形的相鄰兩邊分別落在、上,且一個頂點落在曲線段上,問應(yīng)如何規(guī)劃才能使矩形工業(yè)園區(qū)的用地面積最大?并求出最大的用地面積(精確到).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,四棱錐中,側(cè)面底面,底面是平行四邊形,,,中點,點在線段上.

(Ⅰ)證明:;

(Ⅱ)若 ,求實數(shù)使直線與平面所成角和直線與平面所成角相等.

查看答案和解析>>

同步練習(xí)冊答案