【題目】在明代珠算發(fā)明之前,我們的先祖從春秋開始多是用算籌為工具來記數(shù)、列式和計(jì)算.算籌實(shí)際上是一根根相同長(zhǎng)度的小木棍,如圖,是利用算籌表示數(shù)1~9的一種方法,例如:47可以表示為,如果用算籌表示一個(gè)不含“0”且沒有重復(fù)數(shù)字的三位數(shù),這個(gè)數(shù)至少要用8根小木棍的概率為(

A.B.C.D.

【答案】D

【解析】

表示沒有重復(fù)的三位數(shù)至少需要5根木棍,所以用間接法求解,求出用掉5根,6根,7根木棍這三種情況表示的三個(gè)數(shù)字,進(jìn)而求出可表示三位數(shù)的個(gè)數(shù),根據(jù)對(duì)立事件概率即可求解.

至少要用8根小木根的對(duì)立事件為用掉5根,6根,7根這三種情況,

5根小木棍為12、6這一種情況的全排列,

6根有123127,163167這四種情況的全排列,

7根有124,128,164,168,137,267,263這七種情況的全排列,

故至少要用8根小木根的概率為.

故選:D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)拋物線Cy2=2px(p>0)的焦點(diǎn)為F,準(zhǔn)線為lAB為過焦點(diǎn)F且垂直于x軸的拋物線C的弦,已知以AB為直徑的圓經(jīng)過點(diǎn)(-1,0).

1)求p的值及該圓的方程;

2)設(shè)Ml上任意一點(diǎn),過點(diǎn)MC的切線,切點(diǎn)為N,證明:MFNF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線與拋物線切于點(diǎn),直線過定點(diǎn)Q,且拋物線上的點(diǎn)到點(diǎn)Q的距離與其到準(zhǔn)線距離之和的最小值為.

1)求拋物線的方程及點(diǎn)的坐標(biāo);

2)設(shè)直線與拋物線交于(異于點(diǎn)P)兩個(gè)不同的點(diǎn)A、B,直線PA,PB的斜率分別為,那么是否存在實(shí)數(shù),使得?若存在,求出的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,在三棱柱中,,,,如圖.

1)求證:平面

2)若,求平面與平面所成銳二面角的余弦.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知三棱柱中,側(cè)棱與底面垂直,且,,、分別是、的中點(diǎn),點(diǎn)在線段上,且.

1)求證:不論取何值,總有;

2)當(dāng)時(shí),求平面與平面所成二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,平面PCD,,,EAD的中點(diǎn),ACBE相交于點(diǎn)O.

1)證明:平面ABCD.

2)求直線BC與平面PBD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓,離心率為,直線恒過的一個(gè)焦點(diǎn).

1)求的標(biāo)準(zhǔn)方程;

2)設(shè)為坐標(biāo)原點(diǎn),四邊形的頂點(diǎn)均在上,交于,且,若直線的傾斜角的余弦值為,求直線軸交點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】百年大計(jì),教育為本.某校積極響應(yīng)教育部號(hào)召,不斷加大拔尖人才的培養(yǎng)力度,為清華、北大等排名前十的名校輸送更多的人才.該校成立特長(zhǎng)班進(jìn)行專項(xiàng)培訓(xùn).據(jù)統(tǒng)計(jì)有如下表格.(其中表示通過自主招生獲得降分資格的學(xué)生人數(shù),表示被清華、北大等名校錄取的學(xué)生人數(shù))

年份(屆)

2014

2015

2016

2017

2018

41

49

55

57

63

82

96

108

106

123

1)通過畫散點(diǎn)圖發(fā)現(xiàn)之間具有線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程;(保留兩位有效數(shù)字)

2)若已知該校2019年通過自主招生獲得降分資格的學(xué)生人數(shù)為61人,預(yù)測(cè)2019年高考該?既嗣5娜藬(shù);

3)若從2014年和2018年考人名校的學(xué)生中采用分層抽樣的方式抽取出5個(gè)人回校宣傳,在選取的5個(gè)人中再選取2人進(jìn)行演講,求進(jìn)行演講的兩人是2018年畢業(yè)的人數(shù)的分布列和期望.

參考公式:,

參考數(shù)據(jù):,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某網(wǎng)絡(luò)商城在日開展慶元旦活動(dòng),當(dāng)天各店鋪銷售額破十億,為了提高各店鋪銷售的積極性,采用搖號(hào)抽獎(jiǎng)的方式,抽取了家店鋪進(jìn)行紅包獎(jiǎng)勵(lì).如圖是抽取的家店鋪元旦當(dāng)天的銷售額(單位:千元)的頻率分布直方圖.

1)求抽取的這家店鋪,元旦當(dāng)天銷售額的平均值;

2)估計(jì)抽取的家店鋪中元旦當(dāng)天銷售額不低于元的有多少家;

3)為了了解抽取的各店鋪的銷售方案,銷售額在的店鋪中共抽取兩家店鋪進(jìn)行銷售研究,求抽取的店鋪銷售額在各一個(gè)的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案