【題目】如圖,已知三棱柱中,側(cè)棱與底面垂直,且,,、分別是、的中點,點在線段上,且.
(1)求證:不論取何值,總有;
(2)當時,求平面與平面所成二面角的余弦值.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱錐A﹣BCD中,點E在BD上,EA=EB=EC=ED,BDCD,△ACD為正三角形,點M,N分別在AE,CD上運動(不含端點),且AM=CN,則當四面體C﹣EMN的體積取得最大值時,三棱錐A﹣BCD的外接球的表面積為_____.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】共享單車是指由企業(yè)在校園、公交站點、商業(yè)區(qū)、公共服務(wù)區(qū)等場所提供的自行車單車共享服務(wù),由于其依托“互聯(lián)網(wǎng)+”,符合“低碳出行”的理念,已越來越多地引起了人們的關(guān)注.某部門為了對該城市共享單車加強監(jiān)管,隨機選取了50人就該城市共享單車的推行情況進行問卷調(diào)査,并將問卷中的這50人根據(jù)其滿意度評分值(百分制)按照分成5組,請根據(jù)下面尚未完成并有局部污損的頻率分布表和頻率分布直方圖(如圖所示)解決下列問題:
頻率分布表
組別 | 分組 | 頻數(shù) | 頻率 |
第1組 | 8 | 0.16 | |
第2組 | ▆ | ||
第3組 | 20 | 0.40 | |
第4組 | ▆ | 0.08 | |
第5組 | 2 | ||
合計 | ▆ | ▆ |
(1)求的值;
(2)若在滿意度評分值為的人中隨機抽取2人進行座談,求所抽取的2人中至少一人來自第5組的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為,,四個頂點恰好構(gòu)成了一個邊長為且面積為的菱形.
(1)求橢圓的標準方程;
(2)已知直線,過右焦點F2,且它們的斜率乘積為,設(shè),分別與橢圓交于點,和,,的中點為,的中點為,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知(,是自然對數(shù)的底數(shù)).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)曲線在、處的切線平行,線段的中點為,求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在明代珠算發(fā)明之前,我們的先祖從春秋開始多是用算籌為工具來記數(shù)、列式和計算.算籌實際上是一根根相同長度的小木棍,如圖,是利用算籌表示數(shù)1~9的一種方法,例如:47可以表示為“”,如果用算籌表示一個不含“0”且沒有重復數(shù)字的三位數(shù),這個數(shù)至少要用8根小木棍的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,是由兩個全等的菱形和組成的空間圖形,,∠BAF=∠ECD=60°.
(1)求證:;
(2)如果二面角B-EF-D的平面角為60°,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線和點,過點作直線分別交于,兩點,為線段的中點,為拋物線上的一個動點.
(1)當時,過點作直線交于另一點,為線段的中點,設(shè),的縱坐標分別為,.求的最小值;
(2)證明:存在的值,使得恒成立.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線焦點為,過點與軸垂直的直線交拋物線的弦長為2.
(1)求拋物線的方程;
(2)點和點為兩定點,點和點為拋物線上的兩動點,線段的中點在直線上,求面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com