【題目】如圖,是由兩個全等的菱形組成的空間圖形,,∠BAF=∠ECD60°.

1)求證:;

2)如果二面角BEFD的平面角為60°,求直線與平面所成角的正弦值.

【答案】(1)見解析;(2)

【解析】

1)取的中點(diǎn),連接、,.利用菱形的性質(zhì)、等邊三角形的性質(zhì)分別證得,由此證得平面,進(jìn)而求得,根據(jù)空間角的概念,證得.

2)根據(jù)(1)得到就是二面角的平面角,即,由此求得的長.利用等體積法計(jì)算出到平面的距離,根據(jù)線面角的正弦值的計(jì)算公式,計(jì)算出直線與平面所成角的正弦值.

1)取的中點(diǎn),連接、,.在菱形中,

,∴是正三角形,∴,

同理在菱形,可證,∴平面,∴,

又∵,∴.

2)由(1)知,就是二面角的平面角,即,

,所以是正三角形,故有

如圖,取的中點(diǎn),連接,則,又由(1)得,

所以,平面,且,又,在直角中,

所以,設(shè)到平面的距離為,則

,

,所以,

故直線與平面所成角正弦值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,平面平面.

(Ⅰ)求證:平面;

(Ⅱ)若銳二面角的余弦值為,求直線與平面所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在直角梯形ABCD中,ABCDABAD,且ABADCD1.現(xiàn)以AD為一邊向梯形外作正方形ADEF,然后沿邊AD將正方形ADEF翻折,使平面ADEF與平面ABCD垂直,MED的中點(diǎn),如圖②.

(1)求證:AM∥平面BEC;

(2)求點(diǎn)D到平面BEC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知三棱柱中,側(cè)棱與底面垂直,且,分別是、的中點(diǎn),點(diǎn)在線段上,且.

1)求證:不論取何值,總有

2)當(dāng)時,求平面與平面所成二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的傾斜角為,且經(jīng)過點(diǎn).以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線,從原點(diǎn)O作射線交于點(diǎn)M,點(diǎn)N為射線OM上的點(diǎn),滿足,記點(diǎn)N的軌跡為曲線C.

(Ⅰ)求出直線的參數(shù)方程和曲線C的直角坐標(biāo)方程;

(Ⅱ)設(shè)直線與曲線C交于P,Q兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓,離心率為,直線恒過的一個焦點(diǎn).

1)求的標(biāo)準(zhǔn)方程;

2)設(shè)為坐標(biāo)原點(diǎn),四邊形的頂點(diǎn)均在上,交于,且,若直線的傾斜角的余弦值為,求直線軸交點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),直線與曲線交于兩點(diǎn).

(1)的長;

(2)在以為極點(diǎn),軸的正半軸為極軸建立的極坐標(biāo)系中,設(shè)點(diǎn)的極坐標(biāo)為,求點(diǎn)到線段中點(diǎn)的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,)的圖象如圖所示,令,則下列關(guān)于函數(shù)的說法中正確的是(

A. 函數(shù)圖象的對稱軸方程為

B. 函數(shù)的最大值為2

C. 函數(shù)的圖象上存在點(diǎn),使得在點(diǎn)處的切線與直線平行

D. 若函數(shù)的兩個不同零點(diǎn)分別為,,則最小值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】新型冠狀病毒肺炎疫情爆發(fā)以來,疫情防控牽掛著所有人的心. 某市積極響應(yīng)上級部門的號召,通過沿街電子屏、微信公眾號等各種渠道對此戰(zhàn)“疫”進(jìn)行了持續(xù)、深入的懸窗,幫助全體市民深入了解新冠狀病毒,增強(qiáng)戰(zhàn)勝疫情的信心. 為了檢驗(yàn)大家對新冠狀病毒及防控知識的了解程度,該市推出了相關(guān)的知識問卷,隨機(jī)抽取了年齡在15~75歲之間的200人進(jìn)行調(diào)查,并按年齡繪制頻率分布直方圖如圖所示,把年齡落在區(qū)間內(nèi)的人分別稱為“青少年人”和“中老年人”. 經(jīng)統(tǒng)計(jì)“青少年人”和“中老年人”的人數(shù)比為19:21. 其中“青少年人”中有40人對防控的相關(guān)知識了解全面,“中老年人”中對防控的相關(guān)知識了解全面和不夠全面的人數(shù)之比是2:1.

1)求圖中的值;

2)現(xiàn)采取分層抽樣在中隨機(jī)抽取8名市民,從8人中任選2人,求2人中至少有1人是“中老年人”的概率是多少?

3)根據(jù)已知條件,完成下面的2×2列聯(lián)表,并根據(jù)統(tǒng)計(jì)結(jié)果判斷:能夠有99.9%的把握認(rèn)為“中老年人”比“青少年人”更加了解防控的相關(guān)知識?

了解全面

了解不全面

合計(jì)

青少年人

中老年人

合計(jì)

附表及公式:,其中

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步練習(xí)冊答案