【題目】如圖,在平面直角坐標(biāo)系xOy中,橢圓C: =1(a>1)的左、右頂點(diǎn)分別為A、B,P是橢圓C上任一點(diǎn),且點(diǎn)P位于第一象限.直線PA交y軸于點(diǎn)Q,直線PB交y軸于點(diǎn)R.當(dāng)點(diǎn)Q坐標(biāo)為(0,1)時(shí),點(diǎn)R坐標(biāo)為(0,2)

(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)求證: 為定值;
(3)求證:過(guò)點(diǎn)R且與直線QB垂直的直線經(jīng)過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

【答案】
(1)解:由題意可得A(﹣a,0),B(a,0),

當(dāng)點(diǎn)Q坐標(biāo)為(0,1)時(shí),點(diǎn)R坐標(biāo)為(0,2),

即有kPA= ,直線PA:y= x+1,

kPB=﹣ ,直線PA:y=﹣ x+2,

解得交點(diǎn)P( , ),

代入橢圓方程可得 + =1,

解得a= ,

則橢圓C的標(biāo)準(zhǔn)方程為 =1


(2)證明:設(shè)Q(0,s),R(0,t),

由橢圓的方程可得A(﹣ ,0),B( ,0),

即有直線PA:y= x+s,直線PB的方程為y=﹣ x+t,

解得交點(diǎn)P( , ),

代入橢圓方程可得 + =1,

化簡(jiǎn)可得st=2,

即有 =st=2為定值;


(3)證明:由(2)可得st=2,即t=

直線QB的斜率為k=﹣ ,

即有過(guò)點(diǎn)R且與直線QB垂直的直線方程為y= x+t,

即為y= ,令x=﹣ ,可得y=0,

則過(guò)點(diǎn)R且與直線QB垂直的直線經(jīng)過(guò)定點(diǎn),坐標(biāo)為(﹣ ,0)


【解析】(1)求得A,B的坐標(biāo),直線PA,PB的方程,求交點(diǎn)P,代入橢圓方程,解方程,可得a,進(jìn)而得到橢圓方程;(2)設(shè)Q(0,s),R(0,t),求得直線PA,PB的方程,求交點(diǎn)P,代入橢圓方程,化簡(jiǎn)整理可得st=2,再由向量的數(shù)量積的坐標(biāo)表示可得定值;(3)求得QB的斜率,運(yùn)用兩直線垂直的條件:斜率之積為﹣1,求得垂線的方程,由st=2,代入,結(jié)合直線恒過(guò)定點(diǎn)的求法,可得定點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=2sin2 +x)﹣ cos2x﹣1,x∈R,若函數(shù)k(x)=f(x+a)的圖象關(guān)于點(diǎn)(﹣ ,0)對(duì)稱,且α∈(0,π),則α=(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,D是到原點(diǎn)的距離不大于1的點(diǎn)構(gòu)成的區(qū)域,E是滿足不等式組 的點(diǎn)(x,y)構(gòu)成的區(qū)域,向D中隨機(jī)投一點(diǎn),則所投的點(diǎn)落在E中的概率是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,江的兩岸可近似的看成兩平行的直線,江岸的一側(cè)有A,B兩個(gè)蔬菜基地,江的另一側(cè)點(diǎn)C處有一個(gè)超市.已知A、B、C中任意兩點(diǎn)間的距離為20千米.超市欲在AB之間建一個(gè)運(yùn)輸中轉(zhuǎn)站D,A,B兩處的蔬菜運(yùn)抵D處后,再統(tǒng)一經(jīng)過(guò)貨輪運(yùn)抵C處.由于A,B兩處蔬菜的差異,這兩處的運(yùn)輸費(fèi)用也不同.如果從A處出發(fā)的運(yùn)輸費(fèi)為每千米2元,從B處出發(fā)的運(yùn)輸費(fèi)為每千米1元,貨輪的運(yùn)輸費(fèi)為每千米3元.

(1)設(shè)∠ADC=α,試將運(yùn)輸總費(fèi)用S(單位:元)表示為α的函數(shù)S(α),并寫出自變量的取值范圍;
(2)問(wèn)中轉(zhuǎn)站D建在何處時(shí),運(yùn)輸總費(fèi)用S最?并求出最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)x∈R,y∈R,若復(fù)數(shù)(x2+y2-4)+(x-y)i是純虛數(shù),則點(diǎn)(x,y)的軌跡是(  )

A. 以原點(diǎn)為圓心,以2為半徑的圓

B. 兩個(gè)點(diǎn),其坐標(biāo)為(2,2),(-2,-2)

C. 以原點(diǎn)為圓心,以2為半徑的圓和過(guò)原點(diǎn)的一條直線

D. 以原點(diǎn)為圓心,以2為半徑的圓,并且除去兩點(diǎn)(,),(-,-)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在極坐標(biāo)系中,設(shè)直線過(guò)點(diǎn)A( , ),B(3, ),且直線與曲線C:ρ=2rsinθ(r>0)有且只有一個(gè)公共點(diǎn),求實(shí)數(shù)r的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知恒等式(1+x+x2n=a0+a1x+a2x2+…+a2nx2n
(1)求a1+a2+a3+…+a2n和a2+2a3+22a4+…+22n2a2n的值;
(2)當(dāng)n≥6時(shí),求證: a2+2A a3+…+22n2 a2n<49n2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=xex﹣asinxcosx(a∈R,其中e是自然對(duì)數(shù)的底數(shù)).
(1)當(dāng)a=0時(shí),求f(x)的極值;
(2)若對(duì)于任意的x∈[0, ],f(x)≥0恒成立,求a的取值范圍;
(3)是否存在實(shí)數(shù)a,使得函數(shù)f(x)在區(qū)間 上有兩個(gè)零點(diǎn)?若存在,求出a的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在圓上任取一點(diǎn),過(guò)點(diǎn)軸的垂線段為垂足.,當(dāng)點(diǎn)在圓上運(yùn)動(dòng)時(shí),

(1)求點(diǎn)的軌跡的方程;

(2) 若,直線交曲線兩點(diǎn)(點(diǎn)、與點(diǎn)不重合),且滿足.為坐標(biāo)原點(diǎn),點(diǎn)滿足,證明直線過(guò)定點(diǎn),并求直線的斜率的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案