【題目】在平面直角坐標(biāo)系 中,以 為極點(diǎn), 軸的正半軸為極軸,建立極坐標(biāo)系.曲線 的極坐標(biāo)方程為 ,曲線 的參數(shù)方程為 為參數(shù)), .
(Ⅰ)求曲線 的直角坐標(biāo)方程,并判斷該曲線是什么曲線?
(Ⅱ)設(shè)曲線 與曲線 的交點(diǎn)為 , , ,當(dāng) 時(shí),求 的值.

【答案】解:(Ⅰ)由 ,該曲線為橢圓.

(Ⅱ)將 代入 ,由直線參數(shù)方程的幾何意義,設(shè) , , , ,

所以 ,從而 ,由于 ,所以


【解析】(1)利用極坐標(biāo)和直角坐標(biāo)的互化公式即可得到橢圓的標(biāo)準(zhǔn)方程。(2)根據(jù)題意把直線的參數(shù)方程代入到橢圓的方程得到關(guān)于t的二次方程,利用韋達(dá)定理求出 t1 + t2 , t1t2 的代數(shù)式利用已知得出 | PA | + | P B | = | t1 t2 |=,代入解出 cos2 α的值結(jié)合角的取值范圍即可得到cos α的值即可。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,△ABC是等腰直角三角形∠CAB=90°,AC=2a,E,F(xiàn)分別為AC,BC的中點(diǎn),沿EF將△CEF折起,得到如圖2所示的四棱錐C′﹣ABFE
(1)求證:AB⊥平面AEC′;
(2)當(dāng)四棱錐C′﹣ABFE體積取最大值時(shí),
①若G為BC′中點(diǎn),求異面直線GF與AC′所成角;
②在C′﹣ABFE中AE交BF于C,求二面角A﹣CC′﹣B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C所對(duì)的邊分別是a,b,c,.

)證明:;

)若,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為梯形,CD∥AB,AB=2CD,AC交BD于O,銳角△PAD所在平面⊥底面ABCD,PA⊥BD,點(diǎn)Q在側(cè)棱PC上,且PQ=2QC.

(1)求證:PA∥平面QBD;
(2)求證BD⊥AD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一次國際學(xué)術(shù)會(huì)議上,來自四個(gè)國家的五位代表被安排坐在一張圓桌,為了使他們能夠自由交談,事先了解到的情況如下:
甲是中國人,還會(huì)說英語.
乙是法國人,還會(huì)說日語.
丙是英國人,還會(huì)說法語.
丁是日本人,還會(huì)說漢語.
戊是法國人,還會(huì)說德語.
則這五位代表的座位順序應(yīng)為( )
A.甲丙丁戊乙
B.甲丁丙乙戊
C.甲乙丙丁戊
D.甲丙戊乙丁

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知ABC三個(gè)頂點(diǎn)坐標(biāo)為A(78),B(104),C(2,-4)

(1)求BC邊上的中線所在直線的方程;

(2)求BC邊上的高所在直線的方程.

【答案】(1);(2)

【解析】試題分析:(1)根據(jù)中點(diǎn)坐標(biāo)公式求出中點(diǎn)的坐標(biāo),根據(jù)斜率公式可求得的斜率,利用點(diǎn)斜式可求邊上的中線所在直線的方程;(2)先根據(jù)斜率公式求出的斜率,從而求出邊上的高所在直線的斜率為,利用點(diǎn)斜式可求邊上的高所在直線的方程.

試題解析:1)由B(10,4)C(2,-4),BC中點(diǎn)D的坐標(biāo)為(6,0),

所以AD的斜率為k8,

所以BC邊上的中線AD所在直線的方程為y08(x6),

8xy480

2)由B(104),C(2,-4),BC所在直線的斜率為k1

所以BC邊上的高所在直線的斜率為-1

所以BC邊上的高所在直線的方程為y8=-(x7),即xy150

型】解答
結(jié)束】
17

【題目】已知直線lx2y2m20

(1)求過點(diǎn)(2,3)且與直線l垂直的直線的方程;

(2)若直線l與兩坐標(biāo)軸所圍成的三角形的面積大于4,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知點(diǎn)P(0,1)在圓C:x2+y2+2mx﹣2y+m2﹣4m+1=0內(nèi),若存在過點(diǎn)P的直線交圓C于A、B兩點(diǎn),且△PBC的面積是△PAC的面積的2倍,則實(shí)數(shù)m的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的一系列對(duì)應(yīng)值如下表:

(1)根據(jù)表格提供的數(shù)據(jù)求出函數(shù)的一個(gè)解析式;

(2)根據(jù)(1)的結(jié)果,若函數(shù)的周期為,當(dāng)時(shí),方程恰有兩個(gè)不同的解,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), .

1求函數(shù)的定義域;

2判斷函數(shù)的奇偶性,并說明理由;

3判斷函數(shù)在區(qū)間上的單調(diào)性,并加以證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案