【題目】已知函數(shù)

(1)當x>0時,證明 ;

(2)當x>-1且x0時,不等式 恒成立,求實數(shù)k的值.

【答案】(1)詳見解析;(2).

【解析】

試題(1)構(gòu)造函數(shù),利用導數(shù)證明即可;(2)變形后構(gòu)造函數(shù),利用導數(shù)研究函數(shù)的單調(diào)性,如果導函數(shù)研究困難,可以再對導函數(shù)求導研究.

(1)令 ,則

當x>0時,有 ,則 是增函數(shù),

從而,時,得證。 5分

(2)不等式可化為

,則

,

當x>0時,有 ,令 ,則

上是減函數(shù),即

因此, 上是減函數(shù),從而,

所以,當 時,對應x>0,有;

當-1<x<0時,由,

,則,

上是增函數(shù),即,

因此,上是減函數(shù)。

從而,。

所以,當時,對于,有。 12分

綜合①②,當時,在時,有。 13分

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知實數(shù),設函數(shù)

(1)當時,求函數(shù)的單調(diào)區(qū)間;

(2)對任意均有的取值范圍.

注:為自然對數(shù)的底數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】上周某校高三年級學生參加了數(shù)學測試,年級組織任課教師對這次考試進行成績分析現(xiàn)從中隨機選取了40名學生的成績作為樣本,已知這40名學生的成績?nèi)吭?/span>40分至100分之間,現(xiàn)將成績按如下方式分成6組:第一組;第二組;……;第六組,并據(jù)此繪制了如圖所示的頻率分布直方圖.

1)估計這次月考數(shù)學成績的平均分和眾數(shù);

2)從成績大于等于80分的學生中隨機選2名,求至少有1名學生的成績在區(qū)間內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知無窮數(shù)列{an}anZ)的前n項和為Sn,記S1,S2,Sn中奇數(shù)的個數(shù)為bn

(1)若an=n,請寫出數(shù)列{bn}的前5項;

(2)求證:a1為奇數(shù),aii=2,3,4,)為偶數(shù)數(shù)列{bn}是單調(diào)遞增數(shù)列的充分不必要條件;

(3)若ai=bi,i=1,23,,求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知正方形ABCD,E,F分別是CD,AD的中點,BE,CF交于點P.求證

(1)BECF;

(2)AP=AB.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列結(jié)論中正確的是(

A.以直角三角形的一邊所在直線為旋轉(zhuǎn)軸,其余各邊旋轉(zhuǎn)一周而形成的面所圍成的幾何體是一個圓錐

B.以直角梯形的一邊所在直線為旋轉(zhuǎn)軸,其余各邊旋轉(zhuǎn)一周而形成的面所圍成的幾何體是一個圓臺

C.以平行四邊形的一邊所在直線為旋轉(zhuǎn)軸,其余各邊旋轉(zhuǎn)一周而形成的面所圍成的幾何體是一個圓柱

D.圓面繞其一條直徑所在直線旋轉(zhuǎn)后得到的幾何體是一個球

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題中

1)在等差數(shù)列中,的充要條件;

2)已知等比數(shù)列為遞增數(shù)列,且公比為,若,則當且僅當

3)若數(shù)列為遞增數(shù)列,則的取值范圍是

4)已知數(shù)列滿足,則數(shù)列的通項公式為

5)若是等比數(shù)列的前項的和,且;(其中是非零常數(shù),),則A+B為零.

其中正確命題是_________(只需寫出序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某籃球隊甲、乙兩名運動員練習罰球,每人練習10組,每組罰球40個.命中個數(shù)的莖葉圖如圖,則下面結(jié)論中錯誤的一個是(  )

A. 甲的極差是29 B. 甲的中位數(shù)是24

C. 甲罰球命中率比乙高 D. 乙的眾數(shù)是21

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的定義域為,且存在實常數(shù),使得對于定義域內(nèi)任意,都有成立,則稱此函數(shù)具有性質(zhì)

1)判斷函數(shù)是否具有性質(zhì),若具有性質(zhì),則求出的值;若不具有性質(zhì),請說明理由;

2)已知函數(shù)具有性質(zhì)且函數(shù)上的最小值為;當時,,求函數(shù)在區(qū)間上的值域;

3)已知函數(shù)既具有性質(zhì),又具有性質(zhì),且當時,,若函數(shù),在恰好存在個零點,求的取值范圍.

查看答案和解析>>

同步練習冊答案