【題目】已知無窮數(shù)列{an}anZ)的前n項(xiàng)和為Sn,記S1S2,Sn中奇數(shù)的個(gè)數(shù)為bn

(1)若an=n,請寫出數(shù)列{bn}的前5項(xiàng);

(2)求證:a1為奇數(shù),aii=2,34,)為偶數(shù)數(shù)列{bn}是單調(diào)遞增數(shù)列的充分不必要條件;

(3)若ai=bi,i=123,,求數(shù)列{an}的通項(xiàng)公式.

【答案】(1) b1=1b2=2,b3=2b4=2,b5=3.(2)證明見解析;(3) an=0

【解析】

1)當(dāng)時(shí),,由此能寫出數(shù)列的前5項(xiàng)

2)先證充分性,推導(dǎo)出,從而數(shù)列是單調(diào)遞增數(shù)列;再證不必要性,當(dāng)數(shù)列中只有是奇數(shù),其余項(xiàng)都是偶數(shù)時(shí),為偶數(shù),)均為奇數(shù),,數(shù)列是單調(diào)遞增數(shù)列,由此能證明:“是奇數(shù),為偶數(shù)”是“數(shù)列是單調(diào)遞增數(shù)列”的充分不必要條件

(3)當(dāng)為奇數(shù)時(shí),推導(dǎo)出不能為偶數(shù);當(dāng)為偶數(shù),推導(dǎo)出不能是奇數(shù),從而同奇偶,由此得到

1)當(dāng)時(shí),可知數(shù)列是等差數(shù)列,則,

,,,,

,,,,

2)證明:(充分性)

是奇數(shù),為偶數(shù),

∴對于任意,都是奇數(shù),

,

∴數(shù)列是單調(diào)遞增數(shù)列

(不必要性)

當(dāng)數(shù)列中只有是奇數(shù),其余項(xiàng)都是偶數(shù)時(shí),為偶數(shù),)均為奇數(shù),

,數(shù)列是單調(diào)遞增數(shù)列,

∴“是奇數(shù),為偶數(shù)”是“數(shù)列是單調(diào)遞增數(shù)列”的不必要條件

綜上,“是奇數(shù),為偶數(shù)”是“數(shù)列是單調(diào)遞增數(shù)列”的充分不必要條件

(3)(i)當(dāng)為奇數(shù)時(shí),若為偶數(shù),

是奇數(shù),則為奇數(shù),∴為偶數(shù),與矛盾;

為偶數(shù),則為偶數(shù),∴為奇數(shù),與矛盾

∴當(dāng)為奇數(shù)時(shí),不能為偶數(shù)

ii)當(dāng)為偶數(shù),若為奇數(shù),

為奇數(shù),則為偶數(shù),∴為偶數(shù),與矛盾,

為偶數(shù),則為奇數(shù),∴為奇數(shù),與矛盾,

∴當(dāng)為偶數(shù)時(shí),不能是奇數(shù)

綜上,同奇偶,

為偶數(shù),且,∴,

,,∴,

以此類推,得到

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一個(gè)長方體的容器中,里面裝有少量的水,現(xiàn)在將容器繞著其底部的一條棱傾斜.

1)在傾斜的過程中,水面的形狀不斷變化,可能是矩形,也可能變成不是矩形的平行四邊形,對嗎?

2)在傾斜的過程中,水的形狀也不斷變化,可以是棱柱,也可能變?yōu)槔馀_(tái)或棱錐,對嗎?

3)如果傾斜時(shí),不是繞著底部的一條棱,而是繞著其底面的一個(gè)頂點(diǎn),上面的第(1)問和第(2)問對不對?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為自然對數(shù)的底數(shù)).

(1)若處的切線過點(diǎn),求實(shí)數(shù)的值;

(2)當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中

1)在等差數(shù)列中,的充要條件;

2)已知等比數(shù)列為遞增數(shù)列,且公比為,若,則當(dāng)且僅當(dāng)

3)若數(shù)列為遞增數(shù)列,則的取值范圍是

4)已知數(shù)列滿足,則數(shù)列的通項(xiàng)公式為

5)若是等比數(shù)列的前項(xiàng)的和,且;(其中是非零常數(shù),),則A+B為零.

其中正確命題是_________(只需寫出序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲廠以千克/小時(shí)的速度勻速生產(chǎn)某種產(chǎn)品(生產(chǎn)條件要求),每小時(shí)可獲得利潤是.

1)要使生產(chǎn)該產(chǎn)品小時(shí)獲得的利潤不低于元,求的取值范圍;

2)要使生產(chǎn)千克該產(chǎn)品獲得的利潤最大,問:甲廠應(yīng)該選取何種生產(chǎn)速度?并求此最大利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正四面體ABCD中,點(diǎn)EF分別是AB,BC的中點(diǎn),則下列命題正確的序號(hào)是______

①異面直線ABCD所成角為90°;

②直線AB與平面BCD所成角為60°

③直線EF∥平面ACD

④平面AFD⊥平面BCD

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)當(dāng)x>0時(shí),證明 ;

(2)當(dāng)x>-1且x0時(shí),不等式 恒成立,求實(shí)數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知.(其中實(shí)數(shù)).

1)分別求出p,q中關(guān)于x的不等式的解集MN

2)若pq的必要不充分條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),是兩條不同的直線,,是三個(gè)不同的平面,給出下列四個(gè)命題:(1)若,,那么;(2)若,,那么;(3)若,,那么;(4)若,,則,其中正確命題的序號(hào)是(

A.1)(2B.2)(3C.1)(3D.2)(4

查看答案和解析>>

同步練習(xí)冊答案