【題目】已知函數(shù),.

1)若處取得極值,求實(shí)數(shù)的值;

2)對(duì)任意實(shí)數(shù),都有,求實(shí)數(shù)的取值范圍;

3)當(dāng)時(shí),證明:存在唯一,使得,且.

【答案】1)1;(2;3)證明見(jiàn)解析.

【解析】

1)先求導(dǎo)數(shù),利用極值點(diǎn)處的導(dǎo)數(shù)值為零可求實(shí)數(shù)的值,注意進(jìn)行驗(yàn)證;

2)分離參數(shù),,只需要求解的最大值即可;

3)先利用函數(shù)單調(diào)性及邊界值的符號(hào)證明存在性和唯一性,再構(gòu)造函數(shù)結(jié)合單調(diào)性證明.

1,因?yàn)?/span>處取得極值,所以,

解得;此時(shí),當(dāng)時(shí),,為增函數(shù);

當(dāng)時(shí),,為減函數(shù);所以處取得極小值.

.

2)因?yàn)閷?duì)任意實(shí)數(shù),都有,所以;

,則

當(dāng)時(shí),為增函數(shù);當(dāng)時(shí),,為減函數(shù);

所以有最大值,所以,即實(shí)數(shù)的取值范圍是.

3)①先證明存在性和唯一性;

,

當(dāng)時(shí),;當(dāng)時(shí),;

所以單調(diào)遞減,在單調(diào)遞增;

,,

,則,

所以存在唯一的使得.

由(2)知,遞減,在上遞增,

因?yàn)?/span>,時(shí),,所以存在唯一的使得.

②欲證,只需證明;

因?yàn)?/span>,且,即證,

,即證

由于單調(diào)遞減,且時(shí),,所以,

所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知由樣本數(shù)據(jù)點(diǎn)集合,求得的回歸直線(xiàn)方程為,且,現(xiàn)發(fā)現(xiàn)兩個(gè)數(shù)據(jù)點(diǎn)誤差較大,去除后重新求得的回歸直線(xiàn)l的斜率為1.2,則(

A.變量xy具有正相關(guān)關(guān)系B.去除后的回歸方程為

C.去除后y的估計(jì)值增加速度變快D.去除后相應(yīng)于樣本點(diǎn)的殘差為0.05

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)生產(chǎn)的某種產(chǎn)品被檢測(cè)出其中一項(xiàng)質(zhì)量指標(biāo)存在問(wèn)題. 該企業(yè)為了檢查生產(chǎn)該產(chǎn)品的甲、乙兩條流水線(xiàn)的生產(chǎn)情況,隨機(jī)地從這兩條流水線(xiàn)上生產(chǎn)的大量產(chǎn)品中各抽取件產(chǎn)品作為樣本,測(cè)出它們的這一項(xiàng)質(zhì)量指標(biāo)值.若該項(xiàng)質(zhì)量指標(biāo)值落在內(nèi),則為合格品,否則為不合格品.表 1是甲流水線(xiàn)樣本的頻數(shù)分布表,如圖所示是乙流水線(xiàn)樣本的頻率分布直方圖.

表1 甲流水線(xiàn)樣本的頻數(shù)分布表

質(zhì)量指標(biāo)值

頻數(shù)

(1)若將頻率視為概率,某個(gè)月內(nèi)甲、乙兩條流水線(xiàn)均生產(chǎn)了萬(wàn)件產(chǎn)品,則甲、乙兩條流水線(xiàn)分別生產(chǎn)出不合格品約多少件?

(2)在甲流水線(xiàn)抽取的樣本的不合格品中隨機(jī)抽取兩件,求兩件不合格品的質(zhì)量指標(biāo)值均偏大的概率;

(3)根據(jù)已知條件完成下面列聯(lián)表,并判斷在犯錯(cuò)誤概率不超過(guò)的前提下能否認(rèn)為“該企業(yè)生產(chǎn)的這種產(chǎn)品的質(zhì)量指標(biāo)值與甲、乙兩條流水線(xiàn)的選擇有關(guān)”?

甲生產(chǎn)線(xiàn)

乙生產(chǎn)線(xiàn)

合計(jì)

合格品

不合格品

合計(jì)

附:(其中為樣本容量)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某網(wǎng)絡(luò)平臺(tái)從購(gòu)買(mǎi)該平臺(tái)某課程的客戶(hù)中,隨機(jī)抽取了100位客戶(hù)的數(shù)據(jù),并將這100個(gè)數(shù)據(jù)按學(xué)時(shí)數(shù),客戶(hù)性別等進(jìn)行統(tǒng)計(jì),整理得到如表:

學(xué)時(shí)數(shù)

男性

18

12

9

9

6

4

2

女性

2

4

8

2

7

13

4

(1)根據(jù)上表估計(jì)男性客戶(hù)購(gòu)買(mǎi)該課程學(xué)時(shí)數(shù)的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表,結(jié)果保留小數(shù)點(diǎn)后兩位);

(2)從這100位客戶(hù)中,對(duì)購(gòu)買(mǎi)該課程學(xué)時(shí)數(shù)在20以下的女性客戶(hù)按照分層抽樣的方式隨機(jī)抽取7人,再?gòu)倪@7人中隨機(jī)抽取2人,求這2人購(gòu)買(mǎi)的學(xué)時(shí)數(shù)都不低于15的概率.

(3)將購(gòu)買(mǎi)該課程達(dá)到25學(xué)時(shí)及以上者視為“十分愛(ài)好該課程者”,25學(xué)時(shí)以下者視,為“非十分愛(ài)好該課程者”.請(qǐng)根據(jù)已知條件完成以下列聯(lián)表,并判斷是否有99.9%的把握認(rèn)為“十分愛(ài)好該課程者”與性別有關(guān)?

非十分愛(ài)好該課程者

十分愛(ài)好該課程者

合計(jì)

男性

女性

合計(jì)

100

附:,

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】每年的寒冷天氣都會(huì)帶熱“御寒經(jīng)濟(jì)”,以餐飲業(yè)為例,當(dāng)外面太冷時(shí),不少人都會(huì)選擇叫外賣(mài)上門(mén),外賣(mài)商家的訂單就會(huì)增加,下表是某餐飲店從外賣(mài)數(shù)據(jù)中抽取的5天的日平均氣溫與外賣(mài)訂單數(shù).

)經(jīng)過(guò)數(shù)據(jù)分析,一天內(nèi)平均氣溫與該店外賣(mài)訂單數(shù)(份)成線(xiàn)性相關(guān)關(guān)系,試建立關(guān)于的回歸方程,并預(yù)測(cè)氣溫為時(shí)該店的外賣(mài)訂單數(shù)(結(jié)果四舍五入保留整數(shù));

)天氣預(yù)報(bào)預(yù)測(cè)未來(lái)一周內(nèi)(七天),有3天日平均氣溫不高于,若把這7天的預(yù)測(cè)數(shù)據(jù)當(dāng)成真實(shí)數(shù)據(jù),則從這7天任意選取2天,求恰有1天外賣(mài)訂單數(shù)不低于160份的概率.

附注:回歸方程中斜率和截距的最小二乘估計(jì)公式分別為:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P-ABCD中,已知PB⊥底面ABCD,,,,,異面直線(xiàn)PACD所成角等于60°.

1)求直線(xiàn)PC和平面PAD所成角的正弦值的大。

2)在棱PA上是否存在一點(diǎn)E,使得二面角A-BE-D的余弦值為?若存在,指出點(diǎn)E在棱PA上的位置;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】第三屆移動(dòng)互聯(lián)創(chuàng)新大賽,于2017年3月~10月期間舉行,為了選出優(yōu)秀選手,某高校先在計(jì)算機(jī)科學(xué)系選出一種子選手再?gòu)娜U骷?/span>3位志愿者分別與進(jìn)行一場(chǎng)技術(shù)對(duì)抗賽,根據(jù)以往經(jīng)驗(yàn), 與這三位志愿者進(jìn)行比賽一場(chǎng)獲勝的概率分別為,且各場(chǎng)輸贏互不影響.

(1)求甲恰好獲勝兩場(chǎng)的概率;

(2)求甲獲勝場(chǎng)數(shù)的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn)的焦點(diǎn)與橢圓的右焦點(diǎn)相同.

(Ⅰ)求拋物線(xiàn)的方程;

(Ⅱ)若直線(xiàn)與曲線(xiàn)都只有一個(gè)公共點(diǎn),記直線(xiàn)與拋物線(xiàn)的公共點(diǎn)為P,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,是邊長(zhǎng)為4的正方形,平面,分別為的中點(diǎn).

1)證明:平面.

2)若,求二面角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案