【題目】若 是兩條不同的直線(xiàn), 是三個(gè)不同的平面,則下列為真命題的是( )
A.若 ,則
B.若 ,則
C.若 ,則
D.若 ,則

【答案】C
【解析】?jī)蓚(gè)平面垂直,一個(gè)平面內(nèi)的直線(xiàn)不一定垂直于另一個(gè)平面,所以A不正確;兩個(gè)平面平行,兩個(gè)平面內(nèi)的直線(xiàn)不一定平行,所以B不正確;垂直于同一平面的兩個(gè)平面不一定垂直,可能相交,也可能平行,所以D不正確;根據(jù)面面垂直的判定定理知C正確. 所以答案是:C.


【考點(diǎn)精析】本題主要考查了直線(xiàn)與平面平行的性質(zhì)和平面與平面平行的判定的相關(guān)知識(shí)點(diǎn),需要掌握一條直線(xiàn)與一個(gè)平面平行,則過(guò)這條直線(xiàn)的任一平面與此平面的交線(xiàn)與該直線(xiàn)平行;簡(jiǎn)記為:線(xiàn)面平行則線(xiàn)線(xiàn)平行;判斷兩平面平行的方法有三種:用定義;判定定理;垂直于同一條直線(xiàn)的兩個(gè)平面平行才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】正方體ABCD﹣A1B1C1D1中,BB1與平面ACD1所成角的正弦值為( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等比數(shù)列{an}的公比q>1,a1=1,且a1 , a3 , a2+14成等差數(shù)列,數(shù)列{bn}滿(mǎn)足a1b1+a2b2+…+anbn=(n﹣1)3n+1(n∈N*).
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)令cn=(﹣1)n ,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知以點(diǎn) 為圓心的圓與直線(xiàn) 相切,過(guò)點(diǎn) 的動(dòng)直線(xiàn)與圓 相交于 兩點(diǎn).
(1)求圓 的方程;
(2)當(dāng) 時(shí),求直線(xiàn) 的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方體 的棱線(xiàn)長(zhǎng)為 ,線(xiàn)段 上有兩個(gè)動(dòng)點(diǎn) , ,且 ,則下列結(jié)論中錯(cuò)誤的是( ).

A.
B. 平面
C.三棱錐 的體積為定值
D. 的面積與 的面積相等

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知兩矩形ABCD與ADEF所在的平面互相垂直,AB=1,若將△DEF沿直線(xiàn)FD翻折,使得點(diǎn)E落在邊BC上(即點(diǎn)P),則當(dāng)AD取最小值時(shí),邊AF的長(zhǎng)是;此時(shí)四面體F﹣ADP的外接球的半徑是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,若輸入n=10,則輸出的S=(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x﹣alnx(a∈R)
(1)當(dāng)a=2時(shí),求曲線(xiàn)y=f(x)在點(diǎn)A(1,f(1))處的切線(xiàn)方程;
(2)求函數(shù)f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在直角梯形ABCD中,AD∥BC,∠BAD= ,AB=BC=1,AD=2,E是AD的中點(diǎn),O是AC與BE的交點(diǎn).將△ABE沿BE折起到圖2中△A1BE的位置,得到四棱錐A1﹣BCDE.
(Ⅰ) 證明:CD⊥平面A1OC;
(Ⅱ) 若平面A1BE⊥平面BCDE,求平面A1BC與平面A1CD夾角(銳角)的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案