【題目】正方體ABCD﹣A1B1C1D1中,BB1與平面ACD1所成角的正弦值為( )

A.
B.
C.
D.

【答案】B
【解析】解:連接B1D,BD,則:AC⊥BD,
又AC⊥BB1 , ∴AC⊥平面BB1D,∴B1D⊥AC,
同理B1D⊥AD1 , ∴B1D⊥平面ACD1;
設(shè)B1D交平面ACD1于E,連接EA,EC,ED1 , B1D1 , B1A,B1C,
則容易證明△B1ED1 , △B1EC,△B1EA,三個(gè)三角形全等,
取CD1中點(diǎn)F,連接EF,則EF⊥CD1 ,
設(shè)正方體的棱長(zhǎng)為a,則 ,
通過(guò)前面知∠DD1E是DD1和平面ACD1所成的角,
又BB1∥DD1 ,
∴它也是BB1與平面ACD1所成角,則:
cos∠DD1E= ,
∴sin∠DD1E=
故選B.

【考點(diǎn)精析】解答此題的關(guān)鍵在于理解空間角的異面直線所成的角的相關(guān)知識(shí),掌握已知為兩異面直線,A,C與B,D分別是上的任意兩點(diǎn),所成的角為,則

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)P是圓O:x2+y2=1與x軸正半軸的交點(diǎn),半徑OA在x軸的上方,現(xiàn)將半徑OA繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn) 得到半徑OB.設(shè)∠POA=x(0<x<π),
(1)若 ,求點(diǎn)B的坐標(biāo);
(2)求函數(shù)f(x)的最小值,并求此時(shí)x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某生態(tài)公園的平面圖呈長(zhǎng)方形(如圖),已知生態(tài)公園的長(zhǎng)AB=8(km),寬AD=4(km),M,N分別為長(zhǎng)方形ABCD邊AD,DC的中點(diǎn),P,Q為長(zhǎng)方形ABCD邊AB,BC(不含端點(diǎn))上的一點(diǎn).現(xiàn)公園管理處擬修建觀光車(chē)道P﹣Q﹣N﹣M﹣P,要求觀光車(chē)道圍成四邊形(如圖陰影部分)的面積為15(km2),設(shè)BP=x(km),BQ=y(km),
(1)試寫(xiě)出y關(guān)于x的函數(shù)關(guān)系式,并求出x的取值范圍;
(2)若B為公園入口,P,Q為觀光車(chē)站,觀光車(chē)站P位于線段AB靠近入口B的一側(cè).經(jīng)測(cè)算,每天由B入口至觀光車(chē)站P,Q乘坐觀光車(chē)的游客數(shù)量相等,均為1萬(wàn)人,問(wèn)如何確定觀光車(chē)站P,Q的位置,使所有游客步行距離之和最大,并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)在一部向下運(yùn)行的手扶電梯終點(diǎn)的正上方豎直懸掛一幅廣告畫(huà).如圖,該電梯的高AB為4米,它所占水平地面的長(zhǎng)AC為8米.該廣告畫(huà)最高點(diǎn)E到地面的距離為10.5米.最低點(diǎn)D到地面的距離6.5米.假設(shè)某人的眼睛到腳底的距離MN為1.5米,他豎直站在此電梯上觀看DE的視角為θ.
(1)設(shè)此人到直線EC的距離為x米,試用x表示點(diǎn)M到地面的距離;
(2)此人到直線EC的距離為多少米,視角θ最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在銳角△ABC中,sinA=sinBsinC,則tanB+2tanC的最小值是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ax2+(a﹣2)x﹣2,a∈R.
(1)若關(guān)于x的不等式f(x)≤0的解集為[﹣1,2],求實(shí)數(shù)a的值;
(2)當(dāng)a<0時(shí),解關(guān)于x的不等式f(x)≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,且bsinA+acosB=0.
(1)求角B的大。
(2)若b=2,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的最下正周期為π,且點(diǎn)P( ,2)是該函數(shù)圖象的一個(gè)人最高點(diǎn).
(1)求函數(shù)f(x)的解析式;
(2)若x∈[﹣ ,0],求函數(shù)y=f(x)的值域;
(3)把函數(shù)y=f(x)的圖線向右平移θ(0<θ< )個(gè)單位,得到函數(shù)y=g(x)在[0, ]上是單調(diào)增函數(shù),求θ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若 是兩條不同的直線, 是三個(gè)不同的平面,則下列為真命題的是( )
A.若 ,則
B.若 ,則
C.若 ,則
D.若 ,則

查看答案和解析>>

同步練習(xí)冊(cè)答案