【題目】如圖,已知三棱臺(tái)中,,M是的中點(diǎn),N在線段上,且,過(guò)點(diǎn)的平面把這個(gè)棱臺(tái)分為兩部分,求體積較小部分與體積較大部分的體積比值.
【答案】
【解析】
不妨設(shè)平面⊥平面,設(shè)是邊長(zhǎng)為的等邊三角形,則是邊長(zhǎng)為的等邊三角形,設(shè)棱臺(tái)的高為,取中點(diǎn),中點(diǎn),以為原點(diǎn),為軸,為軸,為軸,建立空間直角坐標(biāo)系,先求出三棱臺(tái)的體積,過(guò)點(diǎn),,的平面把這個(gè)棱臺(tái)分為兩部分,體積較小部分的體積為:,體積較大部分的體積為:,由此能求出體積較小部分與體積較大部分的體積比值.
三棱臺(tái),,是的中點(diǎn),在線段上,且不妨設(shè)平面⊥平面,
設(shè)是邊長(zhǎng)為的等邊三角形,則是邊長(zhǎng)為的等邊三角形,
設(shè)棱臺(tái)的高為,取中點(diǎn),中點(diǎn),
以為原點(diǎn),為軸,為軸,為軸,建立空間直角坐標(biāo)系,如圖所示,
,,
三棱臺(tái)的體積,
,
所以,
,,,,
,,,
設(shè)平面的法向量,
所以,即,
取,得,
所以點(diǎn)到平面的距離,
,
所以,
所以
所以,
設(shè)平面與交于點(diǎn),則點(diǎn)到直線的距離是點(diǎn)到直線距離的,
所以,
所以,
所以過(guò)點(diǎn)的平面把這個(gè)棱臺(tái)分為兩部分,
體積較小部分的體積為:
,
體積較大部分的體積為:
,
所以體積較小部分與體積較大部分的體積比值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱中,、分別是、的中點(diǎn).
(1)設(shè)棱的中點(diǎn)為,證明:平面;
(2)若,,,且平面平面.
(i)求三棱柱的體積;
(ii)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在以為頂點(diǎn)的五面體中,面是邊長(zhǎng)為3的菱形.
(1)求證:;
(2)若,,,,,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐中,為等邊三角形,,面積是面積的兩倍,點(diǎn)在側(cè)棱上.
(1)若,證明:平面平面;
(2)若二面角的大小為,且為的中點(diǎn),求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方體中,分別為,和的中點(diǎn),則下列關(guān)系:
①;
②平面;
③;
④平面,
正確的編號(hào)為___________________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2018年,依托用戶(hù)碎片化時(shí)間的娛樂(lè)需求、分享需求以及視頻態(tài)的信息負(fù)載力,短視頻快速崛起;與此同時(shí),移動(dòng)閱讀方興未艾,從側(cè)面反應(yīng)了人們對(duì)精神富足的一種追求,在習(xí)慣了大眾娛樂(lè)所帶來(lái)的短暫愉悅后,部分用戶(hù)依舊對(duì)有著傳統(tǒng)文學(xué)底蘊(yùn)的嚴(yán)肅閱讀青睞有加.
某讀書(shū)APP抽樣調(diào)查了非一線城市M和一線城市N各100名用戶(hù)的日使用時(shí)長(zhǎng)(單位:分鐘),繪制成頻率分布直方圖如下,其中日使用時(shí)長(zhǎng)不低于60分鐘的用戶(hù)記為“活躍用戶(hù)”.
(1)請(qǐng)?zhí)顚?xiě)以下列聯(lián)表,并判斷是否有99.5%的把握認(rèn)為用戶(hù)活躍與否與所在城市有關(guān)?
活躍用戶(hù) | 不活躍用戶(hù) | 合計(jì) | |
城市M | |||
城市N | |||
合計(jì) |
(2)以頻率估計(jì)概率,從城市M中任選2名用戶(hù),從城市N中任選1名用戶(hù),設(shè)這3名用戶(hù)中活躍用戶(hù)的人數(shù)為,求的分布列和數(shù)學(xué)期望.
(3)該讀書(shū)APP還統(tǒng)計(jì)了2018年4個(gè)季度的用戶(hù)使用時(shí)長(zhǎng)y(單位:百萬(wàn)小時(shí)),發(fā)現(xiàn)y與季度()線性相關(guān),得到回歸直線為,已知這4個(gè)季度的用戶(hù)平均使用時(shí)長(zhǎng)為12.3百萬(wàn)小時(shí),試以此回歸方程估計(jì)2019年第一季度()該讀書(shū)APP用戶(hù)使用時(shí)長(zhǎng)約為多少百萬(wàn)小時(shí).
附:,其中.
0.025 | 0.010 | 0.005 | 0.001 | |
5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐P-ABC中,PA⊥底面ABC,AC⊥BC,H為PC的中點(diǎn),M為AH中點(diǎn),PA=AC=2,BC=1.
(Ⅰ)求證:AH⊥平面PBC;
(Ⅱ)求PM與平面AHB成角的正弦值;
(Ⅲ)在線段PB上是否存在點(diǎn)N,使得MN∥平面ABC,若存在,請(qǐng)說(shuō)明點(diǎn)N的位置,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線 ,其焦點(diǎn)到準(zhǔn)線的距離為2,直線與拋物線交于,兩點(diǎn),過(guò),分別作拋物線的切線,,與交于點(diǎn).
(Ⅰ)求的值;
(Ⅱ)若,求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從1到9的九個(gè)數(shù)字中取三個(gè)偶數(shù)四個(gè)奇數(shù),試問(wèn):
(1)能組成多少個(gè)沒(méi)有重復(fù)數(shù)字的七位數(shù)?
(2)上述七位數(shù)中三個(gè)偶數(shù)排在一起的有幾個(gè)?
(3)在(1)中的七位數(shù)中,偶數(shù)排在一起、奇數(shù)也排在一起的有幾個(gè)?
(4)在(1)中任意兩偶數(shù)都不相鄰的七位數(shù)有幾個(gè)?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com