【題目】如圖,已知三棱臺(tái)中,,M的中點(diǎn),N在線段上,且,過(guò)點(diǎn)的平面把這個(gè)棱臺(tái)分為兩部分,求體積較小部分與體積較大部分的體積比值.

【答案】

【解析】

不妨設(shè)平面⊥平面,設(shè)是邊長(zhǎng)為的等邊三角形,則是邊長(zhǎng)為的等邊三角形,設(shè)棱臺(tái)的高為,取中點(diǎn)中點(diǎn),以為原點(diǎn),軸,軸,軸,建立空間直角坐標(biāo)系,先求出三棱臺(tái)的體積,過(guò)點(diǎn),的平面把這個(gè)棱臺(tái)分為兩部分,體積較小部分的體積為:,體積較大部分的體積為:,由此能求出體積較小部分與體積較大部分的體積比值.

三棱臺(tái),,的中點(diǎn),在線段上,且不妨設(shè)平面⊥平面,

設(shè)是邊長(zhǎng)為的等邊三角形,則是邊長(zhǎng)為的等邊三角形,

設(shè)棱臺(tái)的高為,取中點(diǎn),中點(diǎn),

為原點(diǎn),軸,軸,軸,建立空間直角坐標(biāo)系,如圖所示,

,,

三棱臺(tái)的體積

,

所以,

,,

,,

設(shè)平面的法向量,

所以,即,

,得,

所以點(diǎn)到平面的距離

,

所以,

所以

所以,

設(shè)平面交于點(diǎn),則點(diǎn)到直線的距離是點(diǎn)到直線距離的,

所以,

所以,

所以過(guò)點(diǎn)的平面把這個(gè)棱臺(tái)分為兩部分,

體積較小部分的體積為:

體積較大部分的體積為:

,

所以體積較小部分與體積較大部分的體積比值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱中,分別是、的中點(diǎn).

(1)設(shè)棱的中點(diǎn)為,證明:平面;

(2)若,,,且平面平面.

(i)求三棱柱的體積;

(ii)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在以為頂點(diǎn)的五面體中,面是邊長(zhǎng)為3的菱形.

(1)求證:

(2)若,,,,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐中,為等邊三角形,面積是面積的兩倍,點(diǎn)在側(cè)棱上.

(1)若,證明:平面平面;

(2)若二面角的大小為,且的中點(diǎn),求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方體中,分別為,的中點(diǎn),則下列關(guān)系:

平面;

;

平面,

正確的編號(hào)為___________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018年,依托用戶(hù)碎片化時(shí)間的娛樂(lè)需求、分享需求以及視頻態(tài)的信息負(fù)載力,短視頻快速崛起;與此同時(shí),移動(dòng)閱讀方興未艾,從側(cè)面反應(yīng)了人們對(duì)精神富足的一種追求,在習(xí)慣了大眾娛樂(lè)所帶來(lái)的短暫愉悅后,部分用戶(hù)依舊對(duì)有著傳統(tǒng)文學(xué)底蘊(yùn)的嚴(yán)肅閱讀青睞有加.

某讀書(shū)APP抽樣調(diào)查了非一線城市M和一線城市N100名用戶(hù)的日使用時(shí)長(zhǎng)(單位:分鐘),繪制成頻率分布直方圖如下,其中日使用時(shí)長(zhǎng)不低于60分鐘的用戶(hù)記為活躍用戶(hù)

1)請(qǐng)?zhí)顚?xiě)以下列聯(lián)表,并判斷是否有995%的把握認(rèn)為用戶(hù)活躍與否與所在城市有關(guān)?

活躍用戶(hù)

不活躍用戶(hù)

合計(jì)

城市M

城市N

合計(jì)

2)以頻率估計(jì)概率,從城市M中任選2名用戶(hù),從城市N中任選1名用戶(hù),設(shè)這3名用戶(hù)中活躍用戶(hù)的人數(shù)為,求的分布列和數(shù)學(xué)期望.

3)該讀書(shū)APP還統(tǒng)計(jì)了20184個(gè)季度的用戶(hù)使用時(shí)長(zhǎng)y(單位:百萬(wàn)小時(shí)),發(fā)現(xiàn)y與季度()線性相關(guān),得到回歸直線為,已知這4個(gè)季度的用戶(hù)平均使用時(shí)長(zhǎng)為12.3百萬(wàn)小時(shí),試以此回歸方程估計(jì)2019年第一季度()該讀書(shū)APP用戶(hù)使用時(shí)長(zhǎng)約為多少百萬(wàn)小時(shí).

附:,其中

0.025

0.010

0.005

0.001

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐P-ABC中,PA⊥底面ABC,AC⊥BC,H為PC的中點(diǎn),M為AH中點(diǎn),PA=AC=2,BC=1.

(Ⅰ)求證:AH⊥平面PBC;

(Ⅱ)求PM與平面AHB成角的正弦值;

(Ⅲ)在線段PB上是否存在點(diǎn)N,使得MN∥平面ABC,若存在,請(qǐng)說(shuō)明點(diǎn)N的位置,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線 ,其焦點(diǎn)到準(zhǔn)線的距離為2,直線與拋物線交于,兩點(diǎn),過(guò),分別作拋物線的切線,交于點(diǎn).

(Ⅰ)求的值;

(Ⅱ)若,求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】19的九個(gè)數(shù)字中取三個(gè)偶數(shù)四個(gè)奇數(shù),試問(wèn):

1)能組成多少個(gè)沒(méi)有重復(fù)數(shù)字的七位數(shù)?

2)上述七位數(shù)中三個(gè)偶數(shù)排在一起的有幾個(gè)?

3)在(1)中的七位數(shù)中,偶數(shù)排在一起、奇數(shù)也排在一起的有幾個(gè)?

4)在(1)中任意兩偶數(shù)都不相鄰的七位數(shù)有幾個(gè)?

查看答案和解析>>

同步練習(xí)冊(cè)答案