設a,b是兩個實數(shù),給出下列條件:
①a+b>1;②a+b=2;③a+b>2;④a2+b2>2;⑤ab>1.
其中能推出:“a,b中至少有一個大于1”的條件是(  )

A.②③ B.①②③ C.③ D.③④⑤

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

對任意函數(shù),可按流程圖構造一個數(shù)列發(fā)生器,其工作原理如下:①輸入數(shù)據(jù),數(shù)列發(fā)生器輸出;②若,則數(shù)列發(fā)生器結束工作;若,則將反饋回輸入端再輸出,并且依此規(guī)律繼續(xù)下去.現(xiàn)定義.
(1)若輸入,則由數(shù)列發(fā)生器產(chǎn)生數(shù)列,請寫出數(shù)列的所有項;
(2)若要數(shù)列發(fā)生器產(chǎn)生一個無窮的常數(shù)數(shù)列,試求輸入的初始數(shù)據(jù)的值;
(3)若輸入時,產(chǎn)生的無窮數(shù)列滿足:對任意正整數(shù),均有,求
取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

根據(jù)給出的數(shù)塔猜測123 456×9+7=  (  )
1×9+2=11
12×9+3=111
123×9+4=1 111
1 234×9+5=11 111
12 345×9+6=111 111
……

A.1 111 110B.1 111 111
C.1 111 112D.1 111 113

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

用演繹法證明函數(shù)是增函數(shù)時的小前提是

A.增函數(shù)的定義
B.函數(shù)滿足增函數(shù)的定義
C.若,則
D.若,則

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

某個命題與自然數(shù)n有關,若n=k(k∈N*)時命題成立,那么可推得當n=k+1時該命題也成立,現(xiàn)已知n=5時,該命題不成立,那么可以推得(  )

A.n=6時該命題不成立B.n=6時該命題成立
C.n=4時該命題不成立D.n=4時該命題成立

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

平面內有n條直線,最多可將平面分成f(n)個區(qū)域,則f(n)的表達式為(  )

A.n+1B.2n
C.D.n2+n+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

四個小動物換座位,開始是猴、兔、貓、鼠分別坐在1、2、3、4號位置上(如圖),第1次前后排動物互換位置,第2次左右列互換座位,……這樣交替進行下去,那么第2014次互換座位后,小兔的位置對應的是(  )

A.編號1 B.編號2 C.編號3 D.編號4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

圓周上2個點可連成1條弦,這條弦可將圓面劃分成2部分;圓周上3個點可連成3條弦,這3條弦可將圓面劃分成4部分;圓周上4個點可連成6條弦,這6條弦最多可將圓面劃分成8部分.則這些弦最多可把圓面分成 (  ) 部分

A.2n-1 B.2n C.2n+1 D.2n+2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

用數(shù)學歸納法證明“n3+(n+1)3+(n+2)3,(n∈N)能被9整除”,要利
用歸納法假設證nk+1時的情況,只需展開(  ).

A.(k+3)3B.(k+2)3
C.(k+1)3D.(k+1)3+(k+2)3

查看答案和解析>>

同步練習冊答案