精英家教網 > 高中數學 > 題目詳情

【題目】已知函數 .

(Ⅰ)若,求在點處的切線方程;

(Ⅱ)討論函數的單調性;

(Ⅲ)若存在兩個極值點,求的最小值.

【答案】(1)(2)見解析(3)

【解析】試題分析:(Ⅰ)求 ,代入切線方程 ;(Ⅱ)求函數的導數 ,分,和 討論,在 時再分 兩種情況討論函數的單調性;(Ⅲ)根據(Ⅱ)的結果計算 ,設 ,轉化為的最小值,利用導數求函數在區(qū)間的最小值.

試題解析:解:(Ⅰ)時,

所以 ,

所以在點處的切線方程為

(Ⅱ)

的對稱軸為

時,方程無解,

恒成立,所以單增

時,方程有相等的實數解,

恒成立,所以單增

時,方程有解,

解得

時, ,解不等式

所以單增,在單減

時, ,解不等式

所以單增,在單減 ,在單增,

綜上所得:,單調遞減,單調遞增;

,單調遞增,單調遞減,

單調遞增;,單調遞增

(Ⅲ)由(Ⅰ)可知當時函數有兩個極值點,為方程

的兩個根, ,

,則問題轉化為的最值.

又∵

,

所以,所以當最小

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數f(x)= ,x∈R,a∈R.
(1)a=1時,求證:f(x)在區(qū)間(﹣∞,0)上為單調增函數;
(2)當方程f(x)=3有解時,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=
(1)判斷函數在區(qū)間[1,+∞)上的單調性,并用定義證明你的結論.
(2)求該函數在區(qū)間[1,4]上的最大值與最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四邊形為菱形,四邊形為平行四邊形,設相交于點,

1)證明:平面平面;

2)若與平面所成角為60°,求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四棱錐的底面是邊長為1的正方形,側棱底面,且 是側棱上的動點.

(Ⅰ)求四棱錐的體積;

(Ⅱ)如果的中點,求證平面;

(Ⅲ)是否不論點在側棱的任何位置,都有?證明你的結論.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知集合A={x|x2≥1}, ,則A∩(RB)=(
A.(2,+∞)
B.(﹣∞,﹣1]∪(2,+∞)
C.(﹣∞,﹣1)∪(2,+∞)
D.[﹣1,0]∪[2,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在幾何體中,底面為矩形, , .點在棱上,平面與棱交于點

(Ⅰ)求證: ;

(Ⅱ)求證:平面平面;

(Ⅲ)若 , ,平面平面,求二面角的大。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】隨機抽取了40輛汽車在經過路段上某點時的車速(km/h),現將其分成六段: , , , , ,后得到如圖所示的頻率分布直方圖.

(Ⅰ)現有某汽車途經該點,則其速度低于80km/h的概率約是多少?

(Ⅱ)根據直方圖可知,抽取的40輛汽車經過該點的平均速度約是多少?

(Ⅲ)在抽取的40輛且速度在(km/h)內的汽車中任取2輛,求這2輛車車速都在(km/h)內的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】以坐標原點為極點, 軸的非負半軸為極軸建立極坐標系,已知曲線:,點的極坐標為,直線的極坐標方程為,且點在直線上.

(1)求曲線的極坐標方程和直線的直角坐標方程;

(2)設向左平移個單位長度后得到,的交點為, ,求的長.

查看答案和解析>>

同步練習冊答案