【題目】如圖,在幾何體中,底面為矩形, , .點(diǎn)在棱上,平面與棱交于點(diǎn)

(Ⅰ)求證: ;

(Ⅱ)求證:平面平面

(Ⅲ)若, ,平面平面,求二面角的大。

【答案】(1)見(jiàn)解析(2)見(jiàn)解析(3)

【解析】試題分析:(Ⅰ)由線面平行判定定理得平面,由線面平行性質(zhì)定理得;(Ⅱ)通過(guò)線面垂直平面,得面面垂直;(Ⅲ)先證 , 兩兩互相垂直,建立空間直角坐標(biāo)系,求出面的法向量為,結(jié)合面的法向量為,求出法向量夾角即可.

試題解析:(Ⅰ)因?yàn)?/span>為矩形,所以,所以平面

又因?yàn)槠矫?/span>平面,所以

(Ⅱ)因?yàn)?/span>為矩形,所以.因?yàn)?/span>,所以平面

所以平面平面

(Ⅲ)因?yàn)?/span>, ,所以平面,所以

由(Ⅱ)得平面,所以,所以, , 兩兩互相垂直.建立空間直角坐標(biāo)系

不妨設(shè),則,設(shè)

由題意得, , , ,

所以, ,設(shè)平面的法向量為,則,則,所以

又平面的法向量為,所以

因?yàn)槎娼?/span>的平面角是銳角,所以二面角的大小

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=ax+(k﹣1)ax(a>且a≠1)是定義域?yàn)镽的奇函數(shù).
(1)求k值;
(2)若f(1)>0,試判斷函數(shù)單調(diào)性,并求使不等式f(x2+x)+f(t﹣2x)>0恒成立的t的取值范圍;
(3)若f(1)= ,設(shè)g(x)=a2x+a2x﹣2mf(x),g(x)在[1,+∞)上的最小值為﹣1,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知: 、 、 是同一平面上的三個(gè)向量,其中 =(1,2).
(1)若| |=2 ,且 ,求 的坐標(biāo).
(2)若| |= ,且 +2 與2 垂直,求 的夾角θ

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) .

(Ⅰ)若,求在點(diǎn)處的切線方程;

(Ⅱ)討論函數(shù)的單調(diào)性;

(Ⅲ)若存在兩個(gè)極值點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,底面為直角梯形, ,平面平面 分別為的中點(diǎn), 的中點(diǎn),過(guò)作平面分別與交于點(diǎn).

(Ⅰ)當(dāng)中點(diǎn)時(shí),求證:平面平面;

(Ⅱ)當(dāng)時(shí),求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓與圓,點(diǎn)在圓上,點(diǎn)在圓上.

(1)求的最小值;

(2)直線上是否存在點(diǎn),滿足經(jīng)過(guò)點(diǎn)由無(wú)數(shù)對(duì)相互垂直的直線,它們分別與圓和圓相交,并且直線被圓所截得的弦長(zhǎng)等于直線被圓所截得的弦長(zhǎng)?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,是邊長(zhǎng)為的棱形,且分別是的中點(diǎn).

(1)證明:平面;

(2)若二面角的大小為,求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓與直線相切.

(1)若直線與圓交于兩點(diǎn),求;

(2)設(shè)圓軸的負(fù)半軸的交點(diǎn)為,過(guò)點(diǎn)作兩條斜率分別為的直線交圓兩點(diǎn),且,試證明直線恒過(guò)一定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中__________為真命題(把所有真命題的序號(hào)都填上).

①“”成立的必要條件是“”;

②“若成等差數(shù)列,則”的否命題;

③“已知數(shù)列的前項(xiàng)和為,若數(shù)列是等比數(shù)列,則成等比數(shù)列.”的逆否命題;

④“已知上的單調(diào)函數(shù),若,則”的逆命題.

查看答案和解析>>

同步練習(xí)冊(cè)答案