【題目】某網(wǎng)站舉行衛(wèi)生防疫的知識競賽網(wǎng)上答題,共有120000人通過該網(wǎng)站參加了這次競賽,為了解競賽成績情況,從中抽取了100人的成績進行統(tǒng)計,其中成績分組區(qū)間為,,,,其頻率分布直方圖如圖所示,請你解答下列問題:

1)求的值;

2)成績不低于90分的人就能獲得積分獎勵,求所有參賽者中獲得獎勵的人數(shù);

3)根據(jù)頻率分布直方圖,估計這次知識競賽成績的平均分(用組中值代替各組數(shù)據(jù)的平均值).

【答案】126000人(376

【解析】

1)由頻率分布直方圖的性質(zhì),列出方程,即可求解;

2)由頻率分布直方圖,求得成績在之間的頻率,即可求得所有參賽者中獲得獎勵的人數(shù);

3)根據(jù)頻率分布直方圖的平均數(shù)的計算公式,即可求得平均分的估計值.

1)由頻率分布直方圖的性質(zhì),可得,

解得.

2)由頻率分布直方圖,可得成績在之間的頻率為

所以可估計所有參賽者中獲得獎勵的人數(shù)約為.

3)根據(jù)頻率分布直方圖的平均數(shù)的計算公式,

可得平均分的估計值為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,橢圓 的離心率為,直線ly=2上的點和橢圓上的點的距離的最小值為1.

(Ⅰ) 求橢圓的方程;

(Ⅱ) 已知橢圓的上頂點為A,點B,C上的不同于A的兩點,且點B,C關于原點對稱,直線AB,AC分別交直線l于點EF.記直線的斜率分別為,

① 求證: 為定值;

② 求△CEF的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知如圖,橢圓與直線交橢圓,兩點.

(Ⅰ)若直線經(jīng)過橢圓的左焦點,交軸于點,且滿足,.求證:為定值;

(Ⅱ)若,求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】冰桶挑戰(zhàn)賽是一項社交網(wǎng)絡上發(fā)起的慈善公益活動,活動規(guī)定:被邀請者要么在小時內(nèi)接受挑戰(zhàn),要么選擇為慈善機構捐款(不接受挑戰(zhàn)),并且不能重復參加該活動若被邀請者接受挑戰(zhàn),則他需在網(wǎng)絡上發(fā)布自己被冰水澆遍全身的視頻內(nèi)容,然后便可以邀請另外個人參與這項活動假設每個人接受挑戰(zhàn)與不接受挑戰(zhàn)是等可能的,且互不影響

(1)若某參與者接受挑戰(zhàn)后,對其他個人發(fā)出邀請,則這個人中至少有個人接受挑戰(zhàn)的概率是多少?

(2)為了解冰桶挑戰(zhàn)賽與受邀者的性別是否有關,某調(diào)查機構進行了隨機抽樣調(diào)查,調(diào)查得到如下列聯(lián)表:

根據(jù)表中數(shù)據(jù),能否有%的把握認為冰桶挑戰(zhàn)賽與受邀者的性別有關

附:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}滿足a1=,an+1=3an-1(n∈N*).

(1)若數(shù)列{bn}滿足bn=an-,求證:{bn}是等比數(shù)列;

(2)求數(shù)列{an}的前n項和Sn.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}中,點(an,an+1)在直線yx+2上,且首項a1=1.

(1)求數(shù)列{an}的通項公式;

(2)數(shù)列{an}的前n項和為Sn,等比數(shù)列{bn}中,b1a1,b2a2,數(shù)列{bn}的前n項和為Tn,請寫出適合條件TnSn的所有n的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線,.

1)求直線和直線交點P的坐標;

2)若直線l經(jīng)過點P且在兩坐標軸上的截距互為相反數(shù),求直線l的一般式方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)在區(qū)間內(nèi)恰有2019個零點,則________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中,已知,分別根據(jù)下列條件求(精確到0.01°).

(1)①;②;③;④;⑤;

(2)根據(jù)上述計算結果,討論使有一個解、兩個解、無解時,的取值情況.

查看答案和解析>>

同步練習冊答案