【題目】已知函數(shù)為自然底數(shù)),.

(1)當時,對任意的,都有不等式,求實數(shù)的取值范圍;

(2)若函數(shù)上的減函數(shù),求的取值范圍.

【答案】(1);(2)

【解析】

1)根據(jù),將原不等式化為,推出對任意的恒成立,求出的最大值,即可得出結(jié)果;

2)先由函數(shù)單調(diào)性的定義,判斷函數(shù)上是增函數(shù),根據(jù)題意,得到上恒大于0或恒小于0,進而可求出結(jié)果.

(1)當時,,因為,所以

所以不等式可化為,

對任意的恒成立,

上單調(diào)遞減,

所以,

因此只需,

即實數(shù)的取值范圍為.

(2)設,且

所以

因為,且,所以

所以函數(shù)上是增函數(shù),

若要使函數(shù)上的減函數(shù),

上恒大于0或恒小于0

,

所以,

又因為,所以.

綜上,若函數(shù)上的減函數(shù),

的取值范圍是

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】為三次函數(shù),且其圖象關于原點對稱,當時,的極小值為-1,則

(1)函數(shù)的解析式__________

(2)函數(shù)的單調(diào)遞增區(qū)間為___________。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列有關命題的說法正確的是( )

A. 命題“若,則”的否命題為:“若

B. 為真命題,為假命題,則均為假命題

C. 命題“若成等比數(shù)列,則”的逆命題為真命題

D. 命題“若,則”的逆否命題為真命題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取100件,測量這些產(chǎn)品的一項質(zhì)量指標值,由測量表得如下頻數(shù)分布表:

質(zhì)量指標值分組

[75,85)

[85,95)

[95,105)

[105,115)

[115,125)

頻數(shù)

6

26

38

22

8

I)在答題卡上作出這些數(shù)據(jù)的頻率分布直方圖:

II)估計這種產(chǎn)品質(zhì)量指標值的平均數(shù)及方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);

III)根據(jù)以上抽樣調(diào)查數(shù)據(jù),能否認為該企業(yè)生產(chǎn)的這種產(chǎn)品符合質(zhì)量指標值不低于95的產(chǎn)品至少要占全部產(chǎn)品的80%的規(guī)定?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓.

1)若圓的切線軸、軸上的截距相等,求切線的方程;

2)若點是圓C上的動點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了調(diào)查教師對教育改革認識水平,現(xiàn)從某市年齡在的教師隊伍中隨機選取100名教師,得到的頻率分布直方圖如圖所示,若從年齡在中用分層抽樣的方法選取6名教師代表.

1)求年齡在中的教師代表人數(shù);

2)在這6名教師代表中隨機選取2名教師,求在中至少有一名教師被選中的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列是各項均不為的等差數(shù)列,公差為,為其前項和,且滿足

,.數(shù)列滿足,為數(shù)列的前n項和.

(1);

(2)若對任意的,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,平面AED⊥平面ABCD,EFABAB=2,BC=EF=1AE=,DE=3,∠BAD=60°,GBC的中點,HCD中點.

1)求證:平面FGH∥平面BED;

2)求證:BD⊥平面AED

3)求直線EF與平面BED所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公園舉辦雕塑展覽吸引著四方賓客,旅游人數(shù)與人均消費(元)的關系如下:

1)若游客客源充足,那么當天接待游客多少人時,公園的旅游收入最多?

2)若公園每天運營成本為5萬元(不含工作人員的工資),還要上繳占旅游收入的稅收,其余自負盈虧,目前公園的工作人員維持在40人,要使工作人員平均每人每天的工資不低于100元,并維持每天正常運營(不負債),每天的游客人數(shù)應控制在怎樣的合理范圍內(nèi)?(注:旅游收入=旅游人數(shù)×人均消費)

查看答案和解析>>

同步練習冊答案