【題目】為了調(diào)查教師對(duì)教育改革認(rèn)識(shí)水平,現(xiàn)從某市年齡在的教師隊(duì)伍中隨機(jī)選取100名教師,得到的頻率分布直方圖如圖所示,若從年齡在中用分層抽樣的方法選取6名教師代表.
(1)求年齡在中的教師代表人數(shù);
(2)在這6名教師代表中隨機(jī)選取2名教師,求在中至少有一名教師被選中的概率.
【答案】(1)2名;(2)
【解析】
(1)根據(jù)分層抽樣的比例關(guān)系計(jì)算得到答案.
(2)記在中選取2名教師代表為a,b,其余的4名代表為A、B、C、D,列出所有情況和滿足條件的情況,相除得到答案.
(1)由頻率分布直方圖得:
年齡在的教師有,
年齡在的教師有,
年齡在的教師有,
設(shè)年齡在的教師代表人數(shù)為x,則,∴
∴從年齡在中選取教師代表人數(shù)為2名;
(2)記在中選取2名教師代表為a,b,其余的4名代表為A、B、C、D
從這6名教師中選2名教師的選法為:
ab,aA,aB,aC,aD,
bA,bB,bC,bD,
AB,AC,AD,
BC,BD,
CD
以上共15種
在中至少有一名教師被選中的選法為:
ab,aA,aB,aC,aD,
bA,bB,bC,bD
以上9種
在中至少有一名教師被選中為事件A,則.
∴在[35,40)中至少有一名教師被選中的概率為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】f(x)是定義在D上的函數(shù),若對(duì)任何實(shí)數(shù)α∈(0,1)以及D中的任意兩數(shù)x1,x2,恒有f(αx1+(1﹣α)x2)≤αf(x1)+(1﹣α)f(x2),則稱f(x)為定義在D上的C函數(shù).
(1)試判斷函數(shù)f1(x)=x2,中哪些是各自定義域上的C函數(shù),并說明理由;
(2)若f(x)是定義域?yàn)?/span>的函數(shù)且最小正周期為T,試證明f(x)不是R上的C函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓
(1)求圓關(guān)于直線對(duì)稱的圓的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)的直線被圓截得的弦長為8,求直線的方程;
(3)當(dāng)取何值時(shí),直線與圓相交的弦長最短,并求出最短弦長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若定義域均為D的三個(gè)函數(shù)f(x),g(x),h(x)滿足條件:對(duì)任意x∈D,點(diǎn)(x,g(x)與點(diǎn)(x,h(x)都關(guān)于點(diǎn)(x,f(x)對(duì)稱,則稱h(x)是g(x)關(guān)于f(x)的“對(duì)稱函數(shù)”.已知g(x)=,f(x)=2x+b,h(x)是g(x)關(guān)于f(x)的“對(duì)稱函數(shù)”,且h(x)≥g(x)恒成立,則實(shí)數(shù)b的取值范圍是_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(為自然底數(shù)),且.
(1)當(dāng)時(shí),對(duì)任意的,都有不等式,求實(shí)數(shù)的取值范圍;
(2)若函數(shù)是上的減函數(shù),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲廠以千克/小時(shí)的速度勻速生產(chǎn)某種產(chǎn)品(生產(chǎn)條件要求),每小時(shí)可獲得利潤是元.
(1)要使生產(chǎn)該產(chǎn)品小時(shí)獲得的利潤不低于元,求的取值范圍;
(2)要使生產(chǎn)千克該產(chǎn)品獲得的利潤最大,問:甲廠應(yīng)該選取何種生產(chǎn)速度?并求此最大利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知頂點(diǎn),,動(dòng)點(diǎn)分別在軸,軸上移動(dòng),延長至點(diǎn),使得,且.
(1)求動(dòng)點(diǎn)的軌跡;
(2)過點(diǎn)分別作直線交曲線于兩點(diǎn),若直線的傾斜角互補(bǔ),證明:直線的斜率為定值;
(3)過點(diǎn)分別作直線交曲線于兩點(diǎn),若,直線是否經(jīng)過定點(diǎn)?若是,求出該定點(diǎn),若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分15分)已知中心在原點(diǎn)O,焦點(diǎn)在x軸上,離心率為的橢圓過點(diǎn)(,).
(Ⅰ) 求橢圓的方程;
(Ⅱ) 設(shè)不過原點(diǎn)O的直線l與該橢圓交于P,Q兩點(diǎn),滿足直線OP,PQ,OQ的斜率依次成等比數(shù)列,求△OPQ面積的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com