【題目】如圖,在矩形中,,中點,沿直線翻折成,使平面平面.分別在線段上,若沿直線將四邊形向上翻折,使重合,則__________,四棱錐的體積為__________.

【答案】2

【解析】

,垂足為,連,則,因為平面平面,取的中點,連,因為,則,所以平面,所以,所以三點共線,在三角形中,求出,在中,求出,在中,,根據(jù)余弦定理求出,在直角中,求出,,過,垂足為,在直角中,求出,則,從而可得四邊形的面積為,最后由四棱錐的體積公式可得體積.

如圖:過,垂足為,連,則

因為平面平面,取的中點,連,因為,則

所以平面,所以,所以三點共線,

在三角形中,,所以,所以,

中,,所以,

中,,

設(shè),則,

所以,解得,即

設(shè),則,

在直角中,,即,解得,

在直角中,

所以,

,垂足為,則

在直角中,,所以,所以,所以,

所以四邊形的面積為,

所以四棱錐的體積為,

故答案為:(12 2

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓()的離心率,以上頂點和右焦點為直徑端點的圓與直線相切.

1)求橢圓的標準方程.

2)是否存在斜率為2的直線,使得當直線與橢圓有兩個不同的交點,時,能在直線上找到一點,在橢圓上找到一點,滿足?若存在,求出直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知橢圓的左頂點,且點在橢圓上, 分別是橢圓的左、右焦點。過點作斜率為的直線交橢圓于另一點,直線交橢圓于點.

1求橢圓的標準方程;

2為等腰三角形,求點的坐標;

3,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖1,在矩形中,,,的中點,中點.將沿折起到,使得平面平面(如圖2).

(1)求證:;

(2)求直線與平面所成角的正弦值;

(3)在線段上是否存在點,使得平面? 若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一幅標準的三角板如圖1中,為直角,,為直角,,且,把拼齊使兩塊三角板不共面,連結(jié)如圖2.

1)若的中點,的中點,求證:平面

2)在《九章算術(shù)》中,稱四個面都是直角三角形的三棱錐為“鱉臑”,若圖2,三棱錐的體積為2,則圖2是否為鱉臑?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某客戶準備在家中安裝一套凈水系統(tǒng),該系統(tǒng)為三級過濾,使用壽命為十年.如圖所示,兩個一級過濾器采用并聯(lián)安裝,二級過濾器與三級過濾器為串聯(lián)安裝。

其中每一級過濾都由核心部件濾芯來實現(xiàn)。在使用過程中,一級濾芯和二級濾芯都需要不定期更換(每個濾芯是否需要更換相互獨立),三級濾芯無需更換,若客戶在安裝凈水系統(tǒng)的同時購買濾芯,則一級濾芯每個元,二級濾芯每個元.若客戶在使用過程中單獨購買濾芯,則一級濾芯每個元,二級濾芯每個元,F(xiàn)需決策安裝凈水系統(tǒng)的同時購濾芯的數(shù)量,為此參考了根據(jù)套該款凈水系統(tǒng)在十年使用期內(nèi)更換濾芯的相關(guān)數(shù)據(jù)制成的圖表,其中圖是根據(jù)個一級過濾器更換的濾芯個數(shù)制成的柱狀圖,表是根據(jù)個二級過濾器更換的濾芯個數(shù)制成的頻數(shù)分布表.

二級濾芯更換頻數(shù)分布表

二級濾芯更換的個數(shù)

頻數(shù)

個一級過濾器更換濾芯的頻率代替個一級過濾器更換濾芯發(fā)生的概率,以個二級過濾器更換濾芯的頻率代替個二級過濾器更換濾芯發(fā)生的概率.

(1)求一套凈水系統(tǒng)在使用期內(nèi)需要更換的各級濾芯總個數(shù)恰好為的概率;

(2)記表示該客戶的凈水系統(tǒng)在使用期內(nèi)需要更換的一級濾芯總數(shù),求的分布列及數(shù)學期望;

(3)記,分別表示該客戶在安裝凈水系統(tǒng)的同時購買的一級濾芯和二級濾芯的個數(shù).若,且,以該客戶的凈水系統(tǒng)在使用期內(nèi)購買各級濾芯所需總費用的期望值為決策依據(jù),試確定,的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù), .

(1)求過點的切線方程;

(2)當時,求函數(shù)的最大值;

(3)證明:當時,不等式對任意均成立(其中為自然對數(shù)的底數(shù), ).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】20191216日,公安部聯(lián)合阿里巴巴推出的“錢盾反詐機器人”正式上線,當普通民眾接到電信網(wǎng)絡詐騙電話,公安部錢盾反詐預警系統(tǒng)預警到這一信息后,錢盾反詐機器人即自動撥打潛在受害人的電話予以提醒,來電信息顯示為“公安反詐專號”.某法制自媒體通過自媒體調(diào)查民眾對這一信息的了解程度,從5000多參與調(diào)查者中隨機抽取200個樣本進行統(tǒng)計,得到如下數(shù)據(jù):男性不了解這一信息的有50人,了解這一信息的有80人,女性了解這一信息的有40.

1)完成下列列聯(lián)表,問:能否在犯錯誤的概率不超過0.01的前提下,認為200個參與調(diào)查者是否了解這一信息與性別有關(guān)?

了解

不了解

合計

男性

女性

合計

2)該自媒體對200個樣本中了解這一信息的調(diào)查者按照性別分組,用分層抽樣的方法抽取6人,再從這6人中隨機抽取3人給予一等獎,另外3人給予二等獎,求一等獎與二等獎獲得者都有女性的概率.

附:

P(K2k)

0.01

0.005

0.001

k

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)f(x)是定義域為R的周期函數(shù),最小正周期為2

f(1x)f(1x),當-1≤x≤0f(x)=-x.

(1)判斷f(x)的奇偶性;

(2)試求出函數(shù)f(x)在區(qū)間[12]上的表達式.

查看答案和解析>>

同步練習冊答案