【題目】已知橢圓的離心率為,直線與以原點為圓心,以橢圓的短半軸長為半徑的圓相切.為左頂點,過點的直線交橢圓,兩點,直線,分別交直線,兩點.

1)求橢圓的方程;

2)以線段為直徑的圓是否過定點?若是,寫出所有定點的坐標;若不是,請說明理由.

【答案】1;(2)是,定點坐標為

【解析】

1)根據(jù)相切得到,根據(jù)離心率得到,得到橢圓方程.

2)設直線的方程為,點、的坐標分別為,,聯(lián)立方程得到,,計算點的坐標為,點的坐標為,圓的方程可化為,得到答案.

1)根據(jù)題意:,因為,所以,

所以橢圓的方程為.

2)設直線的方程為,點的坐標分別為,

把直線的方程代入橢圓方程化簡得到,

所以,,

所以,

因為直線的斜率,所以直線的方程,

所以點的坐標為,同理,點的坐標為,

故以為直徑的圓的方程為,

又因為,,

所以圓的方程可化為,令,則有,

所以定點坐標為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知為橢圓上的三個點,為坐標原點.

(1)所在的直線方程為,求的長;

(2)為線段上一點,且,當中點恰為點時,判斷的面積是否為常數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“中國剩余定理”又稱“孫子定理”,最早可見于中國南北朝時期的數(shù)學著作《孫子算經》卷下第二十六題,叫做“物不知數(shù)”,原文如下:今有物不知其數(shù),三三數(shù)之剩二,五五數(shù)之剩三,七七數(shù)之剩二.問物幾何?現(xiàn)有這樣一個相關的問題:將120202020個自然數(shù)中被5除余3且被7除余2的數(shù)按照從小到大的順序排成一列,構成一個數(shù)列,則該數(shù)列各項之和為(

A.56383B.57171C.59189D.61242

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某鄉(xiāng)鎮(zhèn)為了發(fā)展旅游行業(yè),決定加強宣傳,據(jù)統(tǒng)計,廣告支出費與旅游收入(單位:萬元)之間有如下表對應數(shù)據(jù):

2

4

5

6

8

30

40

60

50

70

1)求旅游收入對廣告支出費的線性回歸方程,若廣告支出費萬元,預測旅游收入;

2)在已有的五組數(shù)據(jù)中任意抽取兩組,根據(jù)(1)中的線性回歸方程,求至少有一組數(shù)據(jù),其預測值與實際值之差的絕對值不超過的概率.(參考公式:,其中為樣本平均值,參考數(shù)據(jù):,,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了調查某大學學生在周日上網(wǎng)的時間,隨機對名男生和名女生進行了不記名的問卷調查,得到了如下的統(tǒng)計結果:

1:男生上網(wǎng)時間與頻數(shù)分布表:

上網(wǎng)時間(分鐘)

人數(shù)

5

25

30

25

15

2:女生上網(wǎng)時間與頻數(shù)分布表:

上網(wǎng)時間(分鐘)

人數(shù)

10

20

40

20

10

1)若該大學共有女生人,試估計其中上網(wǎng)時間不少于分鐘的人數(shù);

2)完成表3列聯(lián)表,并回答能否有的把握認為學生周日上網(wǎng)時間與性別有關

3)從表3的男生中上網(wǎng)時間少于分鐘上網(wǎng)時間不少于分鐘的人數(shù)中用分層抽樣的方法抽取一個容量為的樣本,再從中任取兩人,求至少有一人上網(wǎng)時間超過分鐘的概率.3

上網(wǎng)時間少于60分鐘

上網(wǎng)時間不少于60分鐘

合計

男生

女生

合計

附:,其中,

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知四棱錐PABCD的底面ABCD是矩形,PA⊥底面ABCD,點E、F分別是棱PCPD的中點,則

①棱ABPD所在直線垂直;

②平面PBC與平面ABCD垂直;

③△PCD的面積大于△PAB的面積;

④直線AE與直線BF是異面直線.

以上結論正確的是________.(寫出所有正確結論的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在棱長為2的正方體中,的中點是P,過點作與截面平行的截面,則截面的面積為__________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(2015秋?谛<壠谥校┲本l過點(1,2)和第一、二、四象限,若直線l的橫截距與縱截距之和為6,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】小明和爸爸媽媽、爺爺奶奶一同參加《中國詩詞大會》的現(xiàn)場錄制,5人坐成一排.若小 明的父母至少有一人與小明相鄰,則不同的坐法總數(shù)為________.

查看答案和解析>>

同步練習冊答案