【題目】某工藝品廠要設計一個如圖Ⅰ所示的工藝品,現(xiàn)有某種型號的長方形材料如圖Ⅱ所示,其周長為4m,這種材料沿其對角線折疊后就出現(xiàn)圖Ⅰ的情況.如圖,ABCD(AB>AD)為長方形的材料,沿AC折疊后AB'交DC于點P,設△ADP的面積為
S2 , 折疊后重合部分△ACP的面積為S1 .
(Ⅰ)設AB=xm,用x表示圖中DP的長度,并寫出x的取值范圍;
(Ⅱ)求面積S2最大時,應怎樣設計材料的長和寬?
(Ⅲ)求面積(S1+2S2)最大時,應怎樣設計材料的長和寬?
【答案】解:(Ⅰ)由題意,AB=x,BC=2﹣x,因為x>2﹣x,故1<x<2.
設DP=y,則PC=x﹣y,
因為△ADP≌△CB'P,故PA=PC=x﹣y,
由PA2=AD2+DP2 , 得(x﹣y)2=(2﹣x)2+y2 , .
(Ⅱ)記△ADP的面積為S2 , 則
= ,
當且僅當 時,S2取得最大值.
故當材料長為 ,寬為 時,S2最大.(Ⅲ) ,1<x<2.
于是 ,∴ .
關于x的函數(shù)(S1+2S2)在 上遞增,在 上遞減,
所以當 時,S1+2S2取得最大值.
故當材料長為 m,寬為 m時,S1+2S2最大
【解析】(Ⅰ)設AB=xm,利用△ADP≌△CB'P,故PA=PC=x﹣y,結(jié)合PA2=AD2+DP2 , 即可用x表示圖中DP的長度,并寫出x的取值范圍;(Ⅱ)利用基本不等式求面積S2最大時,設計材料的長和寬;(Ⅲ)求面積(S1+2S2),利用導數(shù)確定函數(shù)的單調(diào)性,即可得出最大時,設計材料的長和寬.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓 上的動點P與其頂點 , 不重合. (Ⅰ)求證:直線PA與PB的斜率乘積為定值;
(Ⅱ)設點M,N在橢圓C上,O為坐標原點,當OM∥PA,ON∥PB時,求△OMN的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法正確的是( )
A.“x2+x﹣2>0”是“x>1”的充分不必要條件
B.“若am2<bm2 , 則a<b”的逆否命題為真命題
C.命題“?x∈R,使得2x2﹣1<0”的否定是“?x∈R,均有2x2﹣1>0”
D.命題“若x= ,則tanx=1”的逆命題為真命題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,a,b,c分別為內(nèi)角A,B,C的對邊,面積S= abcosC
(1)求角C的大;
(2)設函數(shù)f(x)= sin cos +cos2 ,求f(B)的最大值,及取得最大值時角B的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義:f1(x)=f(x),當n≥2且x∈N*時,fn(x)=f(fn﹣1(x)),對于函數(shù)f(x)定義域內(nèi)的x0 , 若正在正整數(shù)n是使得fn(x0)=x0成立的最小正整數(shù),則稱n是點x0的最小正周期,x0稱為f(x)的n~周期點,已知定義在[0,1]上的函數(shù)f(x)的圖象如圖,對于函數(shù)f(x),下列說法正確的是(寫出所有正確命題的編號)
①1是f(x)的一個3~周期點;
②3是點 的最小正周期;
③對于任意正整數(shù)n,都有fn( )= ;
④若x0∈( ,1],則x0是f(x)的一個2~周期點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設{an}是公比為q的等比數(shù)列.
(Ⅰ)試推導{an}的前n項和公式;
(Ⅱ) 設q≠1,證明數(shù)列{an+1}不是等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,“A>B”是“sinA>sinB”成立的( )
A.充分必要條件
B.充分不必要條件
C.必要不充分條件
D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=2BC=4,E為邊AB的中點,將△ADE沿直線DE翻轉(zhuǎn)成△A1DE.若M為線段A1C的中點,則在△ADE翻折過程中: ①|(zhì)BM|是定值;
②點M在某個球面上運動;
③存在某個位置,使DE⊥A1C;
④存在某個位置,使MB∥平面A1DE.
其中正確的命題是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com