【題目】已知函數(shù)f(x)=(a﹣bx3)ex﹣ ,且函數(shù)f(x)的圖象在點(1,e)處的切線與直線x﹣(2e+1)y﹣3=0垂直.
(Ⅰ)求a,b;
(Ⅱ)求證:當x∈(0,1)時,f(x)>2.
【答案】解:(Ⅰ)因為f(1)=e,故(a﹣b)e=e,故a﹣b=1①; 依題意,f′(1)=﹣2e﹣1;又 ,
故f′(1)=ae﹣1﹣4be=﹣2e﹣1,故a﹣4b=﹣2②,
聯(lián)立①②解得a=2,b=1,
(Ⅱ)證明:由(Ⅰ)得
要證f(x)>2,即證2ex﹣exx3>2+ ;
令g(x)=2ex﹣exx3 , ∴g′(x)=ex(﹣x3﹣3x2+2)=﹣ex(x3+3x2﹣2)=﹣ex(x+1)(x2+2x﹣2),
故當x∈(0,1)時,﹣ex<0,x+1>0;
令p(x)=x2+2x﹣2,因為p(x)的對稱軸為x=﹣1,且p(0)p(1)<0,
故存在x0∈(0,1),使得p(x0)=0;
故當x∈(0,x0)時,p(x)=x2+2x﹣2<0,g′(x)=﹣ex(x+1)(x2+2x﹣2)>0,
即g(x)在(0,x0)上單調遞增;
當x∈(x0 , 1)時,p(x)=x2+2x﹣2>0,故g′(x)=﹣ex(x+1)(x2+2x﹣2)<0,
即g(x)在(x0 , 1)上單調遞減;因為g(0)=2,g(1)=e,
故當x∈(0,1)時,g(x)>g(0)=2,
又當x∈(0,1)時, ,∴
所以2ex﹣exx3>2+ ,即f(x)>2
【解析】(Ⅰ)根據(jù)函數(shù)f(x)的圖象在點(1,e)處的切線與直線x﹣(2e+1)y﹣3=0垂直,求得a,b;(Ⅱ)由(Ⅰ)得 ,證f(x)>2,即證2ex﹣exx3>2+ ,構造函數(shù),確定函數(shù)的單調性,即可證明結論.
【考點精析】認真審題,首先需要了解函數(shù)的最大(小)值與導數(shù)(求函數(shù)在上的最大值與最小值的步驟:(1)求函數(shù)在內(nèi)的極值;(2)將函數(shù)的各極值與端點處的函數(shù)值,比較,其中最大的是一個最大值,最小的是最小值).
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓E: (a>b>0)的左焦點F1與拋物線y2=﹣4x的焦點重合,橢圓E的離心率為 ,過點M (m,0)(m> )作斜率不為0的直線l,交橢圓E于A,B兩點,點P( ,0),且 為定值.
(Ⅰ)求橢圓E的方程;
(Ⅱ)求△OAB面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出下列四個結論:
①已知X服從正態(tài)分布N(0,σ2),且P(﹣2≤X≤2)=0.6,則P(X>2)=0.2;
②若命題 ,則¬p:x∈(﹣∞,1),x2﹣x﹣1≥0;
③已知直線l1:ax+3y﹣1=0,l2:x+by+1=0,則l1⊥l2的充要條件是 .
其中正確的結論的個數(shù)為( )
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知半圓:,、分別為半圓與軸的左、右交點,直線過點且與軸垂直,點在直線上,縱坐標為,若在半圓上存在點使,則的取值范圍是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,直線l的參數(shù)方程為 (t為參數(shù))若以O點為極點,x軸正半軸為極軸建立極坐標系,則曲線C的極坐標方程為ρ=4cos θ.
(1)求曲線C的直角坐標方程及直線l的普通方程;
(2)將曲線C上各點的橫坐標縮短為原來的 ,再將所得曲線向左平移1個單位,得到曲線C1 , 求曲線C1上的點到直線l的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知斜率為k(k≠0)的直線 交橢圓 于 兩點。
(1)記直線 的斜率分別為 ,當 時,證明:直線 過定點;
(2)若直線 過點 ,設 與 的面積比為 ,當 時,求 的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】精準扶貧是鞏固溫飽成果、加快脫貧致富、實現(xiàn)中華民族偉大“中國夢”的重要保障.某地政府在對某鄉(xiāng)鎮(zhèn)企業(yè)實施精準扶貧的工作中,準備投入資金將當?shù)剞r(nóng)產(chǎn)品進行二次加工后進行推廣促銷,預計該批產(chǎn)品銷售量萬件(生產(chǎn)量與銷售量相等)與推廣促銷費萬元之間的函數(shù)關系為(其中推廣促銷費不能超過5千元).已知加工此農(nóng)產(chǎn)品還要投入成本萬元(不包括推廣促銷費用),若加工后的每件成品的銷售價格定為元/件.
(1)試將該批產(chǎn)品的利潤萬元表示為推廣促銷費萬元的函數(shù);(利潤=銷售額-成本-推廣促銷費)
(2)當推廣促銷費投入多少萬元時,此批產(chǎn)品的利潤最大?最大利潤為多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com