【題目】直線l1 , l2分別是函數(shù)f(x)=sinx,x∈[0,π]圖象上點(diǎn)P1 , P2處的切線,l1 , l2垂直相交于點(diǎn)P,且l1 , l2分別與y軸相交于點(diǎn)A,B,則△PAB的面積為

【答案】
【解析】解:函數(shù)f(x)=sinx的導(dǎo)數(shù)為f′(x)=cosx,

設(shè)P1(x1,sinx1),P2(x2,sinx2),(設(shè)x1<x2),

可得圖象上點(diǎn)P1,P2處的切線斜率為cosx1,cosx2,

由l1,l2垂直,可得cosx1cosx2=﹣1,

由余弦函數(shù)的值域,可得cosx1=1,cosx2=﹣1,

即有x1=0,x2=π,

可得切線l1的方程為y=x,

l2的方程為y﹣0=﹣(x﹣π),即y=﹣x+π,

解得P( ),

由A(0,0),B(0,π),

可得△PAB的面積為 ×π× =

所以答案是:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線l:mx﹣y=1,若直線l與直線x﹣(m﹣1)y=2垂直,則m的值為 , 動(dòng)直線l:mx﹣y=1被圓C:x2﹣2x+y2﹣8=0截得的最短弦長(zhǎng)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+φ)(其中x∈R,A>0,ω>0, )的部分圖象如圖所示
(Ⅰ)求A,ω,φ的值;
(Ⅱ)求f(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知隨機(jī)變量ξ的分布如下:

ξ

1

2

3

P

1﹣

2a2

則實(shí)數(shù)a的值為(
A.﹣ 或﹣
B.
C.﹣
D. 或﹣

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若f(x)的定義域?yàn)镽,f′(x)>3恒成立,f(1)=9,則f(x)>3x+6解集為(
A.(﹣1,1)
B.(﹣1,+∞)
C.(﹣∞,﹣1)
D.(1.+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為做好2022年北京冬季奧運(yùn)會(huì)的宣傳工作,組委會(huì)計(jì)劃從某大學(xué)選取若干大學(xué)生志愿者,某記者在該大學(xué)隨機(jī)調(diào)查了1000名大學(xué)生,以了解他們是否愿意做志愿者工作,得到的數(shù)據(jù)如表所示:

愿意做志愿者工作

不愿意做志愿者工作

合計(jì)

男大學(xué)生

610

女大學(xué)生

90

合計(jì)

800


(1)根據(jù)題意完成表格;
(2)是否有95%的把握認(rèn)為愿意做志愿者工作與性別有關(guān)? 參考公式及數(shù)據(jù): ,其中n=a+b+c+d.

P(K2≥K0

0.25

0.15

0.10

0.05

0.025

K0

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) 的部分圖象如圖所示.

(1)求函數(shù) 的解析式;
(2)求函數(shù) 的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)員在一次射擊測(cè)試中射靶6次,命中環(huán)數(shù)如下:9,5,8,4,6,10,
則:
平均命中環(huán)數(shù)為;命中環(huán)數(shù)的方差為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】橢圓 (a>b>0)與x軸,y軸的正半輛分別交于A,B兩點(diǎn),原點(diǎn)O到直線AB的距離為 ,該橢圓的離心率為 . (Ⅰ)求橢圓的方程;
(Ⅱ)過(guò)點(diǎn) 的直線l與橢圓交于兩個(gè)不同的點(diǎn)M,N,求線段MN的垂直平分線在y軸上截距的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案