【題目】已知函數(shù)f(x)=Asin(ωx+φ)(其中x∈R,A>0,ω>0, )的部分圖象如圖所示
(Ⅰ)求A,ω,φ的值;
(Ⅱ)求f(x)的單調(diào)增區(qū)間.

【答案】解:(Ⅰ)根據(jù)函數(shù)f(x)=Asin(ωx+φ)(其中x∈R,A>0,ω>0, )的部分圖象,

可得A=1, =3﹣(﹣1)=4= ,∴ω=

結(jié)合五點(diǎn)法作圖可得 (﹣1)+φ=0,∴φ= ,f(x)=sin( x+ ).

(Ⅱ)令2kπ﹣ x+ ≤2kπ+ ,求得8k﹣3≤x≤8k+1,可得函數(shù)的增區(qū)間為[8k﹣3,8k+1],k∈Z


【解析】(Ⅰ)由函數(shù)的圖象的頂點(diǎn)坐標(biāo)求出A,由周期求出ω,由五點(diǎn)法作圖求出φ的值,可得函數(shù)的解析式.(Ⅱ)由題意利用正弦函數(shù)的單調(diào)區(qū)間,求得f(x)的單調(diào)增區(qū)間.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,AC=6,cosB= ,C=
(1)求AB的長(zhǎng);
(2)求cos(A﹣ )的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè) 為實(shí)數(shù), , .記集合 .若 , 分別為集合S,T的元素個(gè)數(shù),則下列結(jié)論不可能的是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線(xiàn)l:x+2y-2=0,試求:
(1)點(diǎn)P(-2,-1)關(guān)于直線(xiàn)l的對(duì)稱(chēng)點(diǎn)坐標(biāo);
(2)直線(xiàn) 關(guān)于直線(xiàn)l對(duì)稱(chēng)的直線(xiàn)l2的方程;
(3)直線(xiàn)l關(guān)于點(diǎn)(1,1)對(duì)稱(chēng)的直線(xiàn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)
(1)求函數(shù)f(x)的單調(diào)區(qū)間和極值;
(2)若函數(shù)y=g(x)對(duì)任意x滿(mǎn)足g(x)=f(4﹣x),求證:當(dāng)x>2,f(x)>g(x);
(3)若x1≠x2 , 且f(x1)=f(x2),求證:x1+x2>4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在這個(gè)正方體中,

平行;
是異面直線(xiàn);
是異面直線(xiàn);
是異面直線(xiàn);
以上四個(gè)命題中,正確命題的序號(hào)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=﹣x3+3x2+9x+a(a為常數(shù)).
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)若f(x)在區(qū)間[﹣2,2]上的最大值是20,求f(x)在該區(qū)間上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】直線(xiàn)l1 , l2分別是函數(shù)f(x)=sinx,x∈[0,π]圖象上點(diǎn)P1 , P2處的切線(xiàn),l1 , l2垂直相交于點(diǎn)P,且l1 , l2分別與y軸相交于點(diǎn)A,B,則△PAB的面積為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2015年12月,京津冀等地?cái)?shù)城市指數(shù)“爆表”,北方此輪污染為2015年以來(lái)最嚴(yán)重的污染過(guò)程.為了探究車(chē)流量與PM2.5的濃度是否相關(guān),現(xiàn)采集到北方某城市2015年12月份某星期星期一到星期日某一時(shí)間段車(chē)流量與PM2.5的數(shù)據(jù)如表:

時(shí)間

星期一

星期二

星期三

星期四

星期五

星期六

星期七

車(chē)流量x(萬(wàn)輛)

1

2

3

4

5

6

7

PM2.5的濃度y(微克/立方米)

28

30

35

41

49

56

62

(Ⅰ)由散點(diǎn)圖知y與x具有線(xiàn)性相關(guān)關(guān)系,求y關(guān)于x的線(xiàn)性回歸方程;
(Ⅱ)(ⅰ)利用(Ⅰ)所求的回歸方程,預(yù)測(cè)該市車(chē)流量為8萬(wàn)輛時(shí)PM2.5的濃度;
(ⅱ)規(guī)定:當(dāng)一天內(nèi)PM2.5的濃度平均值在(0,50]內(nèi),空氣質(zhì)量等級(jí)為優(yōu);當(dāng)一天內(nèi)PM2.5的濃度平均值在(50,100]內(nèi),空氣質(zhì)量等級(jí)為良.為使該市某日空氣質(zhì)量為優(yōu)或者為良,則應(yīng)控制當(dāng)天車(chē)流量在多少萬(wàn)輛以?xún)?nèi)?(結(jié)果以萬(wàn)輛為單位,保留整數(shù).)
參考公式:回歸直線(xiàn)的方程是 = x+ ,其中 = , =

查看答案和解析>>

同步練習(xí)冊(cè)答案