【題目】已知是橢圓的右焦點(diǎn),過(guò)點(diǎn)的直線交橢圓于兩點(diǎn). 的中點(diǎn),直線與直線交于點(diǎn).

(Ⅰ)求征:

(Ⅱ)求四邊形面積的最小值.

【答案】(Ⅰ)詳見(jiàn)解析;(Ⅱ).

【解析】

(Ⅰ)當(dāng)直線斜率存在時(shí),設(shè)出直線的方程,聯(lián)立直線方程和拋物線方程后可得中點(diǎn)坐標(biāo),故可用直線的斜率表示的坐標(biāo),求出的斜率后可證.注意直線斜率不存在的情形.

(Ⅱ)當(dāng)直線斜率存在時(shí),利用(Ⅰ)的可以計(jì)算 ,從而得到,當(dāng)直線斜率不存在時(shí),, 故可得最小值.

(Ⅰ)當(dāng)直線斜率不存在時(shí),直銭軸垂直,,,

當(dāng)直線斜率存在時(shí),設(shè)斜率為,則直線的方程為,

設(shè),,,則,

聯(lián)立

,

所以直線的方程為,,又,,

,;

(Ⅱ)當(dāng)直線斜率不存在時(shí),直線軸垂直,

,

當(dāng)直線斜率存在時(shí),

設(shè)點(diǎn)到直線的距離為,點(diǎn)到直線的距離為,

,,

,

所以四邊形面積的最小值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線y2=2px(p>0)的焦點(diǎn)為F,過(guò)F且與x軸垂直的直線交該拋物線于A,B兩點(diǎn),|AB|=4.

(1)求拋物線的方程;

(2)過(guò)點(diǎn)F的直線l交拋物線于P,Q兩點(diǎn),若△OPQ的面積為4,求直線l的斜率(其中O為坐標(biāo)原點(diǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C1ab0),其右焦點(diǎn)為F1,0),離心率為

)求橢圓C的方程;

)過(guò)點(diǎn)F作傾斜角為α的直線l,與橢圓C交于P,Q兩點(diǎn).

)當(dāng)時(shí),求△OPQO為坐標(biāo)原點(diǎn))的面積;

)隨著α的變化,試猜想|PQ|的取值范圍,并證明你的猜想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】求滿足下列條件的橢圓或雙曲線的標(biāo)準(zhǔn)方程:

(1)橢圓的焦點(diǎn)在軸上,焦距為4,且經(jīng)過(guò)點(diǎn);

(2)雙曲線的焦點(diǎn)在軸上,右焦點(diǎn)為,過(guò)作重直于軸的直線交雙曲線于,兩點(diǎn),且,離心率為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,左、右頂點(diǎn)分別為、,過(guò)左焦點(diǎn)的直線交橢圓、兩點(diǎn)(異于、兩點(diǎn)),當(dāng)直線垂直于軸時(shí),四邊形的面積為6

(1)求橢圓的方程;

(2)設(shè)直線、的交點(diǎn)為;試問(wèn)的橫坐標(biāo)是否為定值?若是,求出定值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校學(xué)生會(huì)開(kāi)展了一次關(guān)于垃圾分類(lèi)問(wèn)卷調(diào)查的實(shí)踐活動(dòng),組織部分學(xué)生干部在幾個(gè)大型小區(qū)隨機(jī)抽取了共50名居民進(jìn)行問(wèn)卷調(diào)查.調(diào)查結(jié)束后,學(xué)生會(huì)對(duì)問(wèn)卷結(jié)果進(jìn)行了統(tǒng)計(jì),并將其中一個(gè)問(wèn)題是否知道垃圾分類(lèi)方法(知道或不知道)的調(diào)查結(jié)果統(tǒng)計(jì)如下表:

年齡(歲)

頻數(shù)

14

12

8

6

知道的人數(shù)

3

4

8

7

3

2

1)求上表中的的值,并補(bǔ)全右圖所示的的頻率直方圖;

2)在被調(diào)查的居民中,若從年齡在的居民中各隨機(jī)選取1人參加垃圾分類(lèi)知識(shí)講座,求選中的兩人中僅有一人不知道垃圾分類(lèi)方法的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是梯形,四邊形CDEF是矩形,且平面ABCD平面CDEF,BAD=CDA=90,M是線段AE上的動(dòng)點(diǎn).

(1)試確定點(diǎn)M的位置,使AC平面DMF,并說(shuō)明理由;

(2)(1)的條件下,求平面MDF將幾何體ADE-BCF分成的兩部分的體積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019420日,重慶市實(shí)施高考改革方案,2018年秋季入學(xué)的高中一年級(jí)的學(xué)生將實(shí)行模式.“3”為全國(guó)統(tǒng)考科目語(yǔ)文、數(shù)學(xué)、外語(yǔ)所有學(xué)生必考;“1”為物理、歷史科目中選擇一科俗稱“21”;“2”為再選學(xué)科,考生可在化學(xué)、生物、思想政治、地理4個(gè)科目中選擇兩科俗稱“42”,選擇學(xué)科完全相同即為相同組合”.某校高一年級(jí)有三名同學(xué)甲,乙,丙根據(jù)自己喜歡的大學(xué)和專業(yè)情況均選擇了物理,為了了解“42”選科情況老師找這三名同學(xué)來(lái)談話情況如下:

甲說(shuō):我選了化學(xué),但沒(méi)有選思想政治;

乙說(shuō):我與甲有一科相同,但沒(méi)有選化學(xué)和地理;

丙說(shuō):我與甲有相同的選科,與乙也有相同選科,但我們?nèi)齻(gè)選的組合都不相同.則下列結(jié)論正確的是(

A.甲選了化學(xué)和地理B.丙可能選化學(xué)和思想政治

C.甲一定選地理D.丙一定選了生物和地理

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)是圓上的一動(dòng)點(diǎn),點(diǎn)在直線上線段的垂直平分線交直線于點(diǎn)

1)若點(diǎn)的軌跡為橢圓,則求的取值范圍;

2)設(shè)時(shí)對(duì)應(yīng)的橢圓為為橢圓的右頂點(diǎn),直線交于兩點(diǎn),若,求面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案