【題目】已知數(shù)列滿足.
(1)求數(shù)列的通項(xiàng)公式;
(2)對任意給定的,是否存在()使成等差數(shù)列?若存
在,用分別表示和(只要寫出一組);若不存在,請說明理由;
(3)證明:存在無窮多個(gè)三邊成等比數(shù)列且互不相似的三角形,其邊長為.
【答案】(1); (2)當(dāng)時(shí),不存在p,r;當(dāng)時(shí),存在滿足題設(shè);(3)證明見解析.
【解析】
(1)由可求出數(shù)列的通項(xiàng)公式;(2)分和兩種情況討論,根據(jù)題中條件求出,,的大小關(guān)系,再設(shè),即可用表示和;(3)構(gòu)造三角形三邊分別為,,,然后用反證法證明任意兩個(gè)三角形互不相似,本題得證
(1)當(dāng)時(shí),;
當(dāng)時(shí),,
所以;
綜上所述,.
(2)當(dāng)時(shí),若存在p,r使成等差數(shù)列,則,
因?yàn)?/span>,所以,與數(shù)列為正數(shù)相矛盾,因此,當(dāng)時(shí)不存在;
當(dāng)時(shí),設(shè),則,所以,
令,得,此時(shí),,
所以,,
所以;
綜上所述,當(dāng)時(shí),不存在p,r;當(dāng)時(shí),存在滿足題設(shè).
(3)作如下構(gòu)造:,其中,
它們依次為數(shù)列中的第項(xiàng),第項(xiàng),第項(xiàng),
顯然它們成等比數(shù)列,且,,所以它們能組成三角形.
由的任意性,這樣的三角形有無窮多個(gè).
下面用反證法證明其中任意兩個(gè)三角形和不相似:
若三角形和相似,且,則,
整理得,所以,這與條件相矛盾,
因此,任意兩個(gè)三角形不相似.故命題成立.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某科技公司新研制生產(chǎn)一種特殊疫苗,為確保疫苗質(zhì)量,定期進(jìn)行質(zhì)量檢驗(yàn).某次檢驗(yàn)中,從產(chǎn)品中隨機(jī)抽取100件作為樣本,測量產(chǎn)品質(zhì)量體系中某項(xiàng)指標(biāo)值,根據(jù)測量結(jié)果得到如下頻率分布直方圖:
(1)求頻率分布直方圖中的值;
(2)技術(shù)分析人員認(rèn)為,本次測量的該產(chǎn)品的質(zhì)量指標(biāo)值X服從正態(tài)分布,若同組中的每個(gè)數(shù)據(jù)用該組區(qū)間的中間值代替,計(jì)算,并計(jì)算測量數(shù)據(jù)落在(187.8,212.2)內(nèi)的概率;
(3)設(shè)生產(chǎn)成本為y元,質(zhì)量指標(biāo)值為,生產(chǎn)成本與質(zhì)量指標(biāo)值之間滿足函數(shù)關(guān)系假設(shè)同組中的每個(gè)數(shù)據(jù)用該組區(qū)間的中間值代替,試計(jì)算生產(chǎn)該疫苗的平均成本.
參考數(shù)據(jù):,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠利用輻射對食品進(jìn)行滅菌消毒,現(xiàn)準(zhǔn)備在該廠附近建一職工宿舍,并對宿舍進(jìn)行防輻射處理,建房防輻射材料的選用與宿舍到工廠距離有關(guān).若建造宿舍的所有費(fèi)用p(萬元)和宿舍與工廠的距離x(km)的關(guān)系為,若距離為1km時(shí),測算宿舍建造費(fèi)用為100萬元.為了交通方便,工廠與宿舍之間還要修一條道路,已知購置修路設(shè)備需5萬元,鋪設(shè)路面每公里成本為6萬元,設(shè)f(x)為建造宿舍與修路費(fèi)用之和.
(1)求f(x)的表達(dá)式
(2)宿舍應(yīng)建在離工廠多遠(yuǎn)處,可使總費(fèi)用f(x)最小并求最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)若關(guān)于的方程有兩個(gè)不同實(shí)數(shù)根,求的取值范圍;
(2)若關(guān)于的不等式對任意恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知F為橢圓C:的左焦點(diǎn),過F作兩條互相垂直的直線,,直線與C交于A,B兩點(diǎn),直線與C交于D,E兩點(diǎn),則四邊形ADBE的面積最小值為( )
A.4B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】假設(shè)某種設(shè)備使用的年限(年)與所支出的維修費(fèi)用(萬元)有以下統(tǒng)計(jì)資料:
使用年限 | 2 | 3 | 4 | 5 | 6 |
維修費(fèi)用 | 2 | 4 | 5 | 6 | 7 |
若由資料知對呈線性相關(guān)關(guān)系.試求:
(1)求;
(2)線性回歸方程;
(3)估計(jì)使用10年時(shí),維修費(fèi)用是多少?
附:利用“最小二乘法”計(jì)算的值時(shí),可根據(jù)以下公式:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我們在求高次方程或超越方程的近似解時(shí)常用二分法求解,在實(shí)際生活中還有三分法.比如借助天平鑒別假幣.有三枚形狀大小完全相同的硬幣,其中有一假幣(質(zhì)量較輕),把兩枚硬幣放在天平的兩端,若天平平衡,則剩余一枚為假幣,若天平不平衡,較輕的一端放的硬幣為假幣.現(xiàn)有 27 枚這樣的硬幣,其中有一枚是假幣(質(zhì)量較輕),如果只有一臺(tái)天平,則一定能找到這枚假幣所需要使用天平的最少次數(shù)為( )
A.2B.3C.4D.5
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年6月13日,三屆奧運(yùn)亞軍,羽壇傳奇,馬來西亞名將李宗偉宣布退役,當(dāng)天有大量網(wǎng)友關(guān)注此事件,某網(wǎng)上論壇從關(guān)注此事件跟帖中,隨機(jī)抽取了100名網(wǎng)友進(jìn)行調(diào)查統(tǒng)計(jì),先分別統(tǒng)計(jì)他們在跟帖中的留言條數(shù),再把網(wǎng)友人數(shù)按留言條數(shù)分成6組;,得到如下圖所小的頻率分布直方圖;并將其中留言不低于40條的規(guī)定為“強(qiáng)烈關(guān)注”,否則為“一般關(guān)注”,對這100名網(wǎng)友進(jìn)一步統(tǒng)計(jì),得到部分?jǐn)?shù)據(jù)如下的列聯(lián)表.
(1)在答題卡上補(bǔ)全2×2列聯(lián)表中數(shù)據(jù),并判斷能否有95%的把握認(rèn)為網(wǎng)友對此事件是否為“強(qiáng)烈關(guān)注”與性別有關(guān)?
(2)該論壇欲在上述“強(qiáng)烈關(guān)注”的網(wǎng)友中按性別進(jìn)行分層抽樣,共抽取5人,并在此5人中隨機(jī)抽取兩名接受訪談,記女性訪談?wù)叩娜藬?shù)為占,求5的分布列與數(shù)學(xué)期望.
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
參考公式與數(shù)據(jù):,其中.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com