【題目】某科技公司新研制生產(chǎn)一種特殊疫苗,為確保疫苗質(zhì)量,定期進行質(zhì)量檢驗.某次檢驗中,從產(chǎn)品中隨機抽取100件作為樣本,測量產(chǎn)品質(zhì)量體系中某項指標(biāo)值,根據(jù)測量結(jié)果得到如下頻率分布直方圖:

(1)求頻率分布直方圖中的值;

(2)技術(shù)分析人員認為,本次測量的該產(chǎn)品的質(zhì)量指標(biāo)值X服從正態(tài)分布,若同組中的每個數(shù)據(jù)用該組區(qū)間的中間值代替,計算,并計算測量數(shù)據(jù)落在(187.8,212.2)內(nèi)的概率;

(3)設(shè)生產(chǎn)成本為y元,質(zhì)量指標(biāo)值為,生產(chǎn)成本與質(zhì)量指標(biāo)值之間滿足函數(shù)關(guān)系假設(shè)同組中的每個數(shù)據(jù)用該組區(qū)間的中間值代替,試計算生產(chǎn)該疫苗的平均成本.

參考數(shù)據(jù):,

【答案】(1)(2)測量數(shù)據(jù)落在內(nèi)的概率約為(3)生產(chǎn)該疫苗的平均成本為75.04

【解析】

(1)根據(jù)頻率分布直方圖中,各小長方形的面積的總和等于1可求得a;

(2)利用頻率分布直方圖中每個小矩形的面積乘以小矩形底邊中點的橫坐標(biāo)之和求得平均數(shù),再利用正態(tài)分布中的得解;

(3)根據(jù)分段函數(shù)的解析式,將每組區(qū)間的中間值代入相應(yīng)的解析式所得的值乘以每組小矩形的面積的積再求和可得解.

(1)由,

解得.

(2)依題意,

,

所以

故測量數(shù)據(jù)落在內(nèi)的概率約為.

(3)根據(jù)題意得

故生產(chǎn)該疫苗的平均成本為75.04.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為常數(shù)).

1)當(dāng)時,判斷的單調(diào)性,并用定義證明;

2)若對任意,不等式恒成立,求的取值范圍;

3)討論零點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為(α為參數(shù)),直線C2的方程為,以O(shè)為極點,x軸的正半軸為極軸建立極坐標(biāo)系.

(1)求曲線C1和直線C2的極坐標(biāo)方程;

(2)若直線C2與曲線C1交于A,B兩點,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義域為的單調(diào)遞減的奇函數(shù),當(dāng)時,.

(1)求的值;

(2)求的解析式;

(3)若對任意的,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我們把由半橢圓與半橢圓合成的曲線稱作“果圓”,其中。如圖1,點是相應(yīng)橢圓的焦點,分別是“果圓”與軸的交點,且是邊長為2的等邊三角形。

(1)求“果圓”的方程。

(2)連接“果圓”上任意兩點的線段稱為“果圓”的弦,試研究:是否存在實數(shù),使斜率為的“果圓”平行弦的中點軌跡總是落在某個橢圓上?若存在,求出所有可能的值;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓的離心率為,其左焦點到點的距離為,不過原點O的直線C交于A,B兩點,且線段AB被直線OP平分.

1)求橢圓C的方程;

2)求k的值;

3)求面積取最大值時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓的離心率為,其左焦點到點的距離為,不過原點O的直線C交于A,B兩點,且線段AB被直線OP平分.

1)求橢圓C的方程;

2)求k的值;

3)求面積取最大值時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,,,函數(shù).

1)如果實數(shù)a,b滿足,,試判斷函數(shù)的奇偶性;

2)設(shè),判斷函數(shù)R上的單調(diào)性并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)設(shè)函數(shù), , 為自然對數(shù)的底數(shù).當(dāng)時,若, ,不等式成立,求的最大值.

查看答案和解析>>

同步練習(xí)冊答案