【題目】隨著生活水平的逐步提高,人們對文娛活動的需求與日俱增,其中觀看電視就是一種老少皆宜的娛樂活動.但是我們在觀看電視娛樂身心的同時,也要注意把握好觀看時間,近期研究顯示,一項久坐的生活指標——看電視時間,是導(dǎo)致視力下降的重要因素,即看電視時間越長,視力下降的風(fēng)險越大.研究者在某小區(qū)統(tǒng)計了每天看電視時間(單位:小時)與視力下降人數(shù)的相關(guān)數(shù)據(jù)如下:

編號

1

2

3

4

5

1

1.5

2

2.5

3

12

16

22

24

26

1)請根據(jù)上面的數(shù)據(jù)求關(guān)于的線性回歸方程

2)我們用(1)問求出的線性回歸方程估計回歸方程,由于隨機誤差,所以的估計值,成為點(,)的殘差.

①填寫下面的殘差表,并繪制殘差圖;

編號

1

2

3

4

5

1

1.5

2

2.5

3

12

16

22

24

26

②若殘差圖所在帶狀區(qū)域?qū)挾炔怀^4,我們則認為該模型擬合精度比較高,回歸方程的預(yù)報精度較高,試根據(jù)①繪制的殘差圖分折該模型擬合精度是否比較高?

附:回歸直線的斜率和截距的最小二乘估計分別為,

【答案】1;(2)①殘差表和殘差圖詳見解析;②該模型擬合精度比較高.

【解析】

1)求出樣本中心的坐標,回歸直線方程的斜率,然后截距,即可得到答案;

2)繪制殘差圖,結(jié)合圖表分析該模型擬合精度比較高.

1

,

關(guān)于的線性回歸方程為:

2)①殘差表

編號

1

2

3

4

5

1

1.5

2

2.5

3

12

16

22

24

26

0.8

0.4

2

0.4

1.2

殘差圖:

殘差圖所在帶狀區(qū)域?qū)挾炔怀^4,我們認為該模型擬合精度比較高.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地位于甲、乙兩條河流的交匯處,根據(jù)統(tǒng)計資料預(yù)測,今年汛期甲河流發(fā)生洪水的概率為0.25,乙河流發(fā)生洪水的概率為0.18(假設(shè)兩河流發(fā)生洪水與否互不影響).現(xiàn)有一臺大型設(shè)備正在該地工作,為了保護設(shè)備,施工部門提出以下三種方案:

方案1:運走設(shè)備,此時需花費4000元;

方案2:建一保護圍墻,需花費1000元,但圍墻只能抵御一個河流發(fā)生的洪水,當(dāng)兩河流同時發(fā)生洪水時,設(shè)備仍將受損,損失約56000元;

方案3:不采取措施,此時,當(dāng)兩河流都發(fā)生洪水時損失達60000元,只有一條河流發(fā)生洪水時,損失為10000元.

(1)試求方案3中損失費X(隨機變量)的分布列;

(2)試比較哪一種方案好.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】李先生家住小區(qū),他工作在科技園區(qū),從家開車到公司上班路上有兩條路線(如圖),路線上有三個路口,各路口遇到紅燈的概率均為路線上有兩個路口,各路口遇到紅燈的概率依次為.

Ⅰ)若走路線,求最多遇到1次紅燈的概率;

Ⅱ)若走路線,求遇到紅燈次數(shù)的數(shù)學(xué)期望;

Ⅲ)按照平均遇到紅燈次數(shù)最少的要求,請你幫助李先生從上述兩條路線中選擇一條最好的上班路線,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】總體由編號為01,02...,394040個個體組成.利用下面的隨機數(shù)表選取5個個體,選取方法是從隨機數(shù)表(如表)第1行的第4列和第5列數(shù)字開始由左到右依次選取兩個數(shù)字,則選出來的第5個個體的編號為(

A.23B.21C.35D.32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線過點

1)求拋物線的方程,并求其焦點坐標與準線方程;

2)直線與拋物線交于不同的兩點過點軸的垂線分別與直線,交于兩點,其中為坐標原點.為線段的中點,求證:直線恒過定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,以軸正半軸為極軸建立極坐標系,直線的極坐標方程為

1)求曲線的普通方程和直線的直角坐標方程;

2)已知點,點為曲線上的動點,求線段的中點到直線的距離的最大值.并求此時點的坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】阿波羅尼斯(古希臘數(shù)學(xué)家,約公元前262-190年)的著作《圓錐曲線論》是古代世界光輝的科學(xué)成果,它將圓錐曲線的性質(zhì)網(wǎng)羅殆盡,幾乎使后人沒有插足的余地.他證明過這樣一個命題:平面內(nèi)與兩定點距離的比為常數(shù)的點的軌跡是圓,后人將這個圓稱為阿波羅尼斯圓.①若定點為,寫出的一個阿波羅尼斯圓的標準方程__________;②△中,,則當(dāng)△面積的最大值為時,______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知F1F2是橢圓Cab0)的左、右焦點,過橢圓的上頂點的直線x+y=1被橢圓截得的弦的中點坐標為.

(Ⅰ)求橢圓C的方程;

(Ⅱ)過F1的直線l交橢圓于A,B兩點,當(dāng)△ABF2面積最大時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直四棱柱中,底面是邊長為6的正方形,點在線段上,且滿足,過點作直四棱柱外接球的截面,所得的截面面積的最大值與最小值之差為,則直四棱柱外接球的半徑為(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案