【題目】如圖,在四棱錐中, .
(1)若是的中點(diǎn),求證: 平面;
(2)若,求證:平面平面.
【答案】(1)見解析(2)見解析
【解析】試題分析:(1)取的中點(diǎn),利用平幾知識證明四邊形是平行四邊形,即得.最后根據(jù)線面垂直判定定理得平面;(2)由平均知識計(jì)算,再由,根據(jù)線面垂直判定定理得面,最后根據(jù)面面垂直判定定理得平面平面.
試題解析:解(1)取的中點(diǎn),連接和,由因?yàn)?/span>是的中點(diǎn),
所以是的中位線,所以,
由題意,所以,
所以四邊形是平行四邊形,所以.因?yàn)?/span> ,所以平面;
(2)由題意,在直角梯形中,經(jīng)計(jì)算可證得,又面,
, 面,又面,所以平面平面.
點(diǎn)睛:垂直、平行關(guān)系證明中應(yīng)用轉(zhuǎn)化與化歸思想的常見類型.
(1)證明線面、面面平行,需轉(zhuǎn)化為證明線線平行.
(2)證明線面垂直,需轉(zhuǎn)化為證明線線垂直.
(3)證明線線垂直,需轉(zhuǎn)化為證明線面垂直.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(且, 為自然對數(shù)的底數(shù)).
(1)若曲線在點(diǎn)處的切線斜率為0,且有極小值,
求實(shí)數(shù)的取值范圍.
(2)當(dāng) 時(shí),若不等式: 在區(qū)間內(nèi)恒成立,求實(shí)數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為了解高一年級學(xué)生身高發(fā)育情況,對全校700名高一年級學(xué)生按性別進(jìn)行分層抽樣檢查,測得身高(單位: )頻數(shù)分布表如表1、表2.
表1:男生身高頻數(shù)分布表
表2:女生身高頻數(shù)分布表
(1)求該校高一女生的人數(shù);
(2)估計(jì)該校學(xué)生身高在的概率;
(3)以樣本頻率為概率,現(xiàn)從高一年級的男生和女生中分別選出1人,設(shè)表示身高在學(xué)生的人數(shù),求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】小華準(zhǔn)備購買一臺售價(jià)為5000元的電腦,采用分期付款方式,并在一年內(nèi)將款全部付清,商場提出的 付款方式為:購買后二個(gè)月第一次付款,再過二個(gè)月第二次付款…,購買后12個(gè)月第六次付款,每次付
款金額相同,約定月利率為0.8%每月利息按復(fù)利計(jì)算.求小華每期付款的金額是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),對任意x∈R,都有f(x+4π)=f(x)+f(2π)成立,那么函數(shù)f(x)可能是( )
A.f(x)=2sin x
B.f(x)=2cos2 x
C.f(x)=2cos2 x
D.f(x)=2cos x
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),兩定點(diǎn)A,B滿足| |=| |= =2,則點(diǎn)集{P| =x +y ,|x|+|y|≤1,x,y∈R}所表示的區(qū)域的面積是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是七位評委為甲,乙兩名參賽歌手打出的分?jǐn)?shù)的莖葉圖(其中m,n為數(shù)字0~9中的一個(gè)),則甲歌手得分的眾數(shù)和乙歌手得分的中位數(shù)分別為a和b,則一定有( )
A.a>b
B.a<b
C.a=b
D.a,b的大小與m,n的值有關(guān)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=cos(ωx+ ),(ω>0,0<φ<π),其中x∈R且圖象相鄰兩對稱軸之間的距離為 ;
(1)求f(x)的對稱軸方程和單調(diào)遞增區(qū)間;
(2)求f(x)的最大值、最小值,并指出f(x)取得最大值、最小值時(shí)所對應(yīng)的x的集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P—ABCD中,平面PAD⊥底面ABCD,其中底面ABCD為等腰梯形,AD∥BC,PA=AB=BC=CD=2,PD=2,PA⊥PD,Q為PD的中點(diǎn).
(Ⅰ)證明:CQ∥平面PAB;
(Ⅱ)求直線PD與平面AQC所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com