【題目】某中學(xué)為了解高一年級(jí)學(xué)生身高發(fā)育情況,對(duì)全校700名高一年級(jí)學(xué)生按性別進(jìn)行分層抽樣檢查,測(cè)得身高(單位: )頻數(shù)分布表如表1、表2.

表1:男生身高頻數(shù)分布表

表2:女生身高頻數(shù)分布表

(1)求該校高一女生的人數(shù);

(2)估計(jì)該校學(xué)生身高在的概率;

(3)以樣本頻率為概率,現(xiàn)從高一年級(jí)的男生和女生中分別選出1人,設(shè)表示身高在學(xué)生的人數(shù),求的分布列及數(shù)學(xué)期望.

【答案】(1)300;(2);(3)見(jiàn)解析.

【解析】試題分析:

(1)利用題意得到關(guān)于人數(shù)的方程,解方程可得該校高一女生的人數(shù)為300;

(2)用頻率近似概率值可得該校學(xué)生身高在的概率為.

(3) 由題意可得的可能取值為0,1,2.據(jù)此寫出分布列,計(jì)算可得數(shù)學(xué)期望為 .

試題解析:

(1)設(shè)高一女學(xué)生人數(shù)為,由表1和表2可得樣本中男、女生人數(shù)分別為40,30,則,解得.

即高一女學(xué)生人數(shù)為300.

(2)由表1和表2可得樣本中男女生身高在的人數(shù)為,樣本容量為70.

所以樣本中該校學(xué)生身高在的概率為.

因此,可估計(jì)該校學(xué)生身高在的概率為.

(3)由題意可得的可能取值為0,1,2.

由表格可知,女生身高在的概率為,男生身高在的概率為.

所以, .

所以的分布列為:

所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】過(guò)點(diǎn)A(a,a)可作圓x2+y2﹣2ax+a2+2a﹣3=0的兩條切線,則實(shí)數(shù)a的取值范圍為(
A.a<﹣3或a>1
B.a<
C.﹣3<a<1 或a>
D.a<﹣3或1<a<

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校從高一年級(jí)期末考試的學(xué)生中抽出60名學(xué)生,其成績(jī)(均為整數(shù))的頻率分布直方圖如圖所示:
(1)依據(jù)頻率分布直方圖,估計(jì)這次考試的及格率(60分及以上為及格)和平均分;
(2)已知在[90,100]段的學(xué)生的成績(jī)都不相同,且都在94分以上,現(xiàn)用簡(jiǎn)單隨機(jī)抽樣方法,從95,96,97,98,99,100這6個(gè)數(shù)中任取2個(gè)數(shù),求這2個(gè)數(shù)恰好是兩個(gè)學(xué)生的成績(jī)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列函數(shù)在(0,+∞)上為減函數(shù)的是(
A.y=﹣|x﹣1|
B.y=ex
C.y=ln(x+1)
D.y=﹣x(x+2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)等差數(shù)列{an}滿足a3=5,a10=﹣9.
(1)求{an}的通項(xiàng)公式;
(2)求{an}的前n項(xiàng)和Sn及使得Sn最大的序號(hào)n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖, 在△中, 點(diǎn)邊上, .

(Ⅰ)求

(Ⅱ)若△的面積是, 求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)是定義在上的奇函數(shù),且當(dāng)時(shí), ,則對(duì)任意,函數(shù)的零點(diǎn)個(gè)數(shù)至多有( )

A. 3個(gè) B. 4個(gè) C. 6個(gè) D. 9個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中, .

(1)若的中點(diǎn),求證: 平面

(2)若,求證:平面平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

)當(dāng)時(shí),求的單調(diào)區(qū)間和極值.

)若對(duì)于任意,都有成立,求的取值范圍 ;

)若證明:

查看答案和解析>>

同步練習(xí)冊(cè)答案