【題目】在中國綠化基金會的支持下,庫布齊沙漠得到有效治理.2017年底沙漠的綠化率已達(dá),從2018年開始,每年將出現(xiàn)這樣的情況,上一年底沙漠面積的被栽上樹改造為綠洲,而同時,上一年底綠洲面積的又被侵蝕,變?yōu)樯衬?/span>.
(1)設(shè)庫布齊沙漠面積為1,由綠洲面積和沙漠面積構(gòu)成.2017年底綠洲面積為,經(jīng)過1年綠洲面積為,經(jīng)過n年綠洲面積為,試用表示;
(2)問至少需要經(jīng)過多少年的努力才能使庫布齊沙漠的綠洲面積超過(年數(shù)取整數(shù)).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題 : 表示雙曲線,命題 : 表示橢圓。
(1)若命題與命題 都為真命題,則 是 的什么條件?
(請用簡要過程說明是“充分不必要條件”、“必要不充分條件”、“充要條件”和“既不充分也不必要條件”中的哪一個)
(2)若 為假命題,且 為真命題,求實(shí)數(shù) 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若在處的切線方程為,求的值;
(2)若為區(qū)間上的任意實(shí)數(shù),且對任意,總有成立,求實(shí)數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率,且經(jīng)過點(diǎn).
求橢圓的方程;
過點(diǎn)且不與軸重合的直線與橢圓交于不同的兩點(diǎn),,過右焦點(diǎn)的直線分別交橢圓于點(diǎn),設(shè), ,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)的圖像向左平移個單位后得到函數(shù)的圖像,且函數(shù)滿足,則下列命題中正確的是()
A. 函數(shù)圖像的兩條相鄰對稱軸之間的距離為
B. 函數(shù)圖像關(guān)于點(diǎn)對稱
C. 函數(shù)圖像關(guān)于直線對稱
D. 函數(shù)在區(qū)間內(nèi)為單調(diào)遞減函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出三個命題:①直線上有兩點(diǎn)到平面的距離相等,則直線平行平面;②夾在兩平行平面間的異面直線段的中點(diǎn)的連線平行于這個平面;③過空間一點(diǎn)必有唯一的平面與兩異面直線平行.正確的是( )
A. ②③B. ①②C. ①②③D. ②
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)的環(huán)保社團(tuán)參照國家環(huán)境標(biāo)準(zhǔn)制定了該校所在區(qū)域空氣質(zhì)量指數(shù)與空氣質(zhì)量等級對應(yīng)關(guān)系如下表(假設(shè)該區(qū)域空氣質(zhì)量指數(shù)不會超過300):
空氣質(zhì)量指數(shù) | ||||||
空氣質(zhì)量等級 | 1級優(yōu) | 2級良 | 3級輕度污染 | 4級中度污染 | 5級重度污染 | 6級嚴(yán)重污染 |
該社團(tuán)將該校區(qū)在2018年11月中10天的空氣質(zhì)量指數(shù)監(jiān)測數(shù)據(jù)作為樣本,繪制的頻率分布直方圖如下圖,把該直方圖所得頻率估計(jì)為概率.
(1)以這10天的空氣質(zhì)量指數(shù)監(jiān)測數(shù)據(jù)作為估計(jì)2018年11月的空氣質(zhì)量情況,則2018年11月中有多少天的空氣質(zhì)量達(dá)到優(yōu)良?
(2)從這10天的空氣質(zhì)量指數(shù)監(jiān)測數(shù)據(jù)中,隨機(jī)抽取三天,求恰好有一天空氣質(zhì)量良的概率;
(3)從這10天的數(shù)據(jù)中任取三天數(shù)據(jù),記表示抽取空氣質(zhì)量良的天數(shù),求的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法中正確的是( 。
A.若,則,的長度相等,方向相同或相反
B.若向量是向量的相反向量,則
C.空間向量的減法滿足結(jié)合律
D.在四邊形中,一定有
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若各項(xiàng)均不為零的數(shù)列的前項(xiàng)和為,數(shù)列的前項(xiàng)和為,且,.
(1)證明數(shù)列是等比數(shù)列,并求的通項(xiàng)公式;
(2)設(shè),是否存在正整數(shù),使得對于恒成立.若存在,求出正整數(shù)的最小值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com