【題目】給出三個命題:①直線上有兩點到平面的距離相等,則直線平行平面;②夾在兩平行平面間的異面直線段的中點的連線平行于這個平面;③過空間一點必有唯一的平面與兩異面直線平行.正確的是( )
A. ②③B. ①②C. ①②③D. ②
【答案】D
【解析】
通過舉反例可判斷出命題①的正誤;利用平面與平面平行的性質定理以及直線與平面平行的性質定理可判斷出命題②的正誤;通過實例判斷出命題③的正誤.
對于命題①,如果這兩點在該平面的異側,則直線與該平面相交,命題①錯誤;
對于命題②,如下圖所示,平面平面,,,,,且、分別為、的中點,過點作交平面于點,連接、.
設是的中點,則,平面,平面,平面.
同理可得平面,,平面平面.
又平面平面,平面平面,
平面,平面,平面,命題②正確;
對于命題③,如下圖所示,設是異面直線、的公垂線段,為上一點,過點作,,當點不與點或點重合時,、確定的平面即為與、都平行的平面;若點與點或點重合時,則或,命題③錯誤.故選:D.
科目:高中數(shù)學 來源: 題型:
【題目】6月12日,上海市發(fā)布了《上海市生活垃圾分類投放指南》,將人們生活中產(chǎn)生的大部分垃圾分為七大類.某幢樓前有四個垃圾桶,分別標有“可回收物”、“有害垃圾”、“濕垃圾”、“干垃圾”,小明同學要將雞骨頭(濕垃圾)、貝殼(干垃圾)、指甲油(有害垃圾)、報紙(可回收物)全部投入到這四個桶中,若每種垃圾投放到每個桶中都是等可能的,那么隨機事件“4種垃圾中至少有2種投入正確的桶中”的概率是______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線C的極坐標方程是ρ=2,以極點為原點,極軸為x軸的正半軸建立平面直角坐標系,直線l的參數(shù)方程為(t為參數(shù)).
(1)寫出直線l的普通方程與曲線C的直角坐標方程;
(2)設曲線C經(jīng)過伸縮變換得到曲線,設M(x,y)為上任意一點,求的最小值,并求相應的點M的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù), , 為自然對數(shù)的底數(shù).
(Ⅰ)若函數(shù)存在兩個零點,求的取值范圍;
(Ⅱ)若對任意, , 恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在中國綠化基金會的支持下,庫布齊沙漠得到有效治理.2017年底沙漠的綠化率已達,從2018年開始,每年將出現(xiàn)這樣的情況,上一年底沙漠面積的被栽上樹改造為綠洲,而同時,上一年底綠洲面積的又被侵蝕,變?yōu)樯衬?/span>.
(1)設庫布齊沙漠面積為1,由綠洲面積和沙漠面積構成.2017年底綠洲面積為,經(jīng)過1年綠洲面積為,經(jīng)過n年綠洲面積為,試用表示;
(2)問至少需要經(jīng)過多少年的努力才能使庫布齊沙漠的綠洲面積超過(年數(shù)取整數(shù)).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),將曲線上所有點的橫坐標縮短為原來的,縱坐標縮短為原來的,得到曲線,在以坐標原點為極點,軸的正半軸為極軸的極坐標系中,直線的極坐標方程為.
(1)求曲線的極坐標方程及直線的直角坐標方程;
(2)設點為曲線:上的任意一點,求點到直線的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】空氣質量指數(shù)是一種反映和評價空氣質量的方法,指數(shù)與空氣質量對應如下表所示:
如圖是某城市2018年12月全月的指數(shù)變化統(tǒng)計圖.
根據(jù)統(tǒng)計圖判斷,下列結論正確的是( )
A. 整體上看,這個月的空氣質量越來越差
B. 整體上看,前半月的空氣質量好于后半月的空氣質量
C. 從數(shù)據(jù)看,前半月的方差大于后半月的方差
D. 從數(shù)據(jù)看,前半月的平均值小于后半月的平均值
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com